
61

Why Data Deletion Fails? A Study on Deletion Flaws and Data
Remanence in Android Systems

JUNLIANG SHU, YUANYUAN ZHANG, JUANRU LI, BODONG LI, and DAWU GU,
Shanghai Jiao Tong University

Smart mobile devices are becoming the main vessel of personal privacy information. While they carry
valuable information, data erasure is somehow much more vulnerable than was predicted. The security
mechanisms provided by the Android system are not flexible enough to thoroughly delete sensitive data. In
addition to the weakness among several provided data-erasing and file-deleting mechanisms, we also target
the Android OS design flaws in data erasure, and unveil that the design of the Android OS contradicts some
secure data-erasure demands. We present the data-erasure flaws in three typical scenarios on mainstream
Android devices, such as the data clearing flaw, application uninstallation flaw, and factory reset flaw.
Some of these flaws are inherited data-deleting security issues from the Linux kernel, and some are new
vulnerabilities in the Android system. Those scenarios reveal the data leak points in Android systems.
Moreover, we reveal that the data remanence on the disk is rarely affected by the user’s daily operation, such
as file deletion and app installation and uninstallation, by a real-world data deletion latency experiment.
After one volunteer used the Android phone for 2 months, the data remanence amount was still considerable.
Then, we proposed DataRaider for file recovering from disk fragments. It adopts a file-carving technique and
is implemented as an automated sensitive information recovering framework. DataRaider is able to extract
private data in a raw disk image without any file system information, and the recovery rate is considerably
high in the four test Android phones. We propose some mitigation for data remanence issues, and give the
users some suggestions on data protection in Android systems.

CCS Concepts: � Security and privacy → Mobile platform security;

Additional Key Words and Phrases: Data recovery, secure deletion, file carving, mobile security

ACM Reference Format:
Junliang Shu, Yuanyuan Zhang, Juanru Li, Bodong Li, and Dawu Gu. 2017. Why data deletion fails? A
study on deletion flaws and data remanence in Android systems. ACM Trans. Embed. Comput. Syst. 16, 2,
Article 61 (January 2017), 22 pages.
DOI: http://dx.doi.org/10.1145/3007211

1. INTRODUCTION

The popularity of smart mobile computing platforms, such as in Android devices,
has changed the way that people process information. Developers have built myriad
attractive and innovative applications for smartphones to add convenience and fun to

This work is partially funded by the major program of Shanghai Science and Technology Commission
(Grant No: 15511103002): Research on Mobile Smart Device Application Security Testing and Evaluating,
2015.6.30-2017.6.30.
Authors’ address: J. Shu, Y. Zhang (corresponding author), J. Li, B. Li, and D. Gu, Shanghai Jiao Tong
University, 800 Dongchuan Road, Minhang District, Shanghai, China; emails: {shujunliang, jarod, yyjess,
uchihal, dwgu}@sjtu.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1539-9087/2017/01-ART61 $15.00
DOI: http://dx.doi.org/10.1145/3007211

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

http://dx.doi.org/10.1145/3007211
http://dx.doi.org/10.1145/3007211

61:2 J. Shu et al.

people’s lives. They also store a great deal of sensitive data from those services, such
as cameras, telephony, and GPS. With malicious intention, attackers might retrieve
valuable information. For instance, mobile social network apps help get connected
with friends; online banking services help keep track of financial status; mobile health
apps help manage private information about diet, medication adherence, stress,
smoking cessation, and parental and infant care; and photos can be uploaded to the
Cloud for storage. All of these services build up a digital figure of a person in the new
age of the Internet. Therefore, plenty of privacy information is stored on smart mobile
devices [Azfar et al. 2015, 2016a, 2016b], which are not considered to be the perfect
security vessel for sensitive information.

Being the most popular mobile operating system, Android has long been a prime
source of criticism regarding privacy leaks. The major issue is how the Android system
and applications manipulate the data, such as when and where the data has been read,
modified, or transmitted. Studies in Heuser et al. [2014], Bugiel et al. [2013], Xu et al.
[2012], Jeon et al. [2012], Enck et al. [2014], Arzt et al. [2014], Backes et al. [2013], and
Wu et al. [2014] have discussed different aspects, including hardware characteristics
and OS features, that would directly cause the failure in secure data operations that
leads to the privacy leak. Yet seldom do they notice that data remanence after insecure
deletion could also be a threat since Android does not provide enough clarify regarding
how third-party applications process user data stored on a mobile device.

For example, secure deletion on flash memory is well studied [Wei et al. 2011; Reardon
et al. 2012, 2013]. The safety of the data is not well protected by the underlying pro-
cessing mechanism of the OS, especially Android. Data remanence caused by improper
but stealthy data deletion behavior of the Android system is worth studying to guide a
more secure data erasure.

The major work of this article is twofold. The first part of our work discusses the data
remanence caused by some design flaws of the Android system. One of the main rea-
sons for data remanence is the ignorance of the Android OS on data deletion. Although
data remanence and its recovery have been analyzed in many previous studies [Kung
1993; Bauer and Priyantha 2001; Quick and Choo 2013a, 2013b], the Android security
mechanism still does not consider this issue even in the latest version. We found that
Android 6.0 and ext4 filesystem are still not able to provide secure deletion. Another
issue is the fragmentation of the Android OS. Android devices come in vastly different
performance levels and screen sizes. Further, there are various different versions of An-
droid currently running on those devices, which intensifies the fragmentation. Myriad
versions of Android OS introduce various implementations, for example, the way to ma-
nipulate an embedded SD card, unlock the bootloader, modify the recovery subsystem,
and so on. Under certain circumstances, the proprietary implementations contradict
the privacy protection requirements, and further initialize the nonperceptible privacy
residues.

Does it mean that using other files to overwrite the original files would guarantee
secure deletion? According to our data deletion latency experiment, the answer is no.
By tracking data remanence on the Android devices of several test volunteers, after
more than 2 months usage of the phone, the observed data remanence has an over 40%
chance of staying intact.

After thoroughly studying an exhibition of the data deletion latency and the impact
of this underlying file system design flaw, we construct several attack contexts to
evaluate the related impact. Previous studies mainly focus on physical layer factors
and are concerned less about system-level issues. We argue that it is hard to acquire
a completely secure data deletion mechanism without considering system-level issues
carefully. We study the design policy and data operation interfaces related to three

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence 61:3

aspects of privacy erasure on the most prevalent version of the Android OS with five
mainstream Android devices.

To better evaluate the remanence of the deletion operation, we propose DataRaider,
a file-carving tool for recovering SQLite files from crumbs. Then, the ethical attacks
have successfully recovered over 80% of the data from the data remaining on the device.
It allows us to obtain deleted emails, WeChat chat logs, and even allows impersonation
attacks on an online payment account. We also analyze how much information could
be retrieved after a vulnerable factory reset operation. The results indicate that most
devices are of high privacy disclosure risk due to the deployment of the third-party
Recovery system. Approximately 99% of the original data has remained after an im-
proper data-erasure process, which is considered to be a significant failure in private
data erasure operations.

The contributions of this article are as follows:

(1) We first present the data operations in several system layers, including flash mem-
ory, file systems and the Recovery subsystem. We analyze the vulnerabilities or
design flaws that cause data deletion deficiency. As we have discovered, the flash
memory attempts to prolong its lifetime by balancing the write operations on more
units. In addition, the TRIM command in some Android versions worsens the sit-
uation by poor implementation on deleting the data from the flash memory. Both
guarantee longer data remaining time and higher probability of its recovery. We
also discuss the partition clearing failure caused by careless implementation of file
deletion in the Recovery subsystem.

(2) Based on the discoveries and analysis results, we construct a series of attacks of
private data retrieving. We mainly focus on three most common private data dele-
tion scenarios: app data clearing, app uninstallation, and factory reset operations.
Our attacks successfully retrieve over 80% of deleted private data from the first two
attacks. The implementation flaw in factory reset leads to the success of our attack
on recovery of private data directly from the flash image. In 3 out of 4 experimental
mobile phones, we have retrieved over 90% of the data from the cleared partitions.

(3) We also design and implement an advanced data-remain evaluating framework
based on the file-carving technique. The implemented DataRaider is able to extract
private data in a raw disk image without any file system information, and the
recovery rate is considerably high in the four test Android phones. According to
our experiments, the performance of Dataraider is comparable with mainstream
file-carving tools.

The rest of this work is organized as follows. Section 2 introduces essential back-
ground related to the data storage and the file operations. Section 3 exhibits three
aspects of the system design defects that cause the insecurity of data. In Section 4, we
examine the current state of deletion flaws on Android and the techniques that we use
to retrieve sensitive information out of the data remain. Section 5 proposes a mitigation
method along with suggested use and performance analysis. Section 6 describes the
related work. Section 7 presents our conclusions.

2. STORAGE SYSTEM BACKGROUND

2.1. Linux File System

2.1.1. Ext4 File System. The ext4 file system is the most common default file system in
Linux distributions such as Mint, Mageia, Ubuntu, and Android. It is a journaling file
system for Linux, developed as the successor to ext3 [Wikipedia 2015].

The ext4 file system manages the file storage as a series of block groups, and the
files allocate storage space in units of blocks. A block is a group of sectors whose size

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

61:4 J. Shu et al.

Table I. Layout of a Standard Block Group of Ext4

Group 0 Padding ext4 Super Block Group Descriptors Reserved GDT Blocks
1024B 1 block many blocks many blocks

Data Block Bitmap inode Bitmap inode Table Data Blocks
1 block 1 block many blocks many more blocks

varies between 1KiB and 64KiB. Blocks are, in turn, grouped into larger units called
block groups. Block size is specified at mkfs time and typically is 4KiB.

To decrease performance loss, the block allocator tries to keep each file’s blocks within
the same group, thereby reducing seek times. With the default block size of 4KiB, for
instance, each group will contain 32,768 blocks, for a length of 128MiB. The number
of block groups is the size of the device divided by the size of a block group [Pomeranz
2010].

The layout of a standard block group is depicted in Table I.
The ext4 file system has a journal that records updates to the file system metadata

before updates. In the case of system crash, the OS reads the journal, then either
reprocesses or rolls back the transactions in the journal. Example metadata structures
in Table I include the directory entries that store file names and inodes that store file
metadata. The journal contains the full block that is updated, not just the value being
changed. When a new file is created, the journal should contain the updated version of
the blocks containing the directory entry and the inode. Due to its property, the journal
is very useful for recovering files even after a format operation. On file deletion, the file
system deletes only the journal information; however, the block content still remains
in the storage system. It gives the hackers a chance to recover the file.

2.1.2. Ext4_utils Security Issues. A root cause of the failure in wiping the metadata is
the ineffective implementation of ext4_utils. The earlier version of ext4_utils by default
wiped the partition when performing the format operation. It wiped only the index of
the files, leaving the metadata. However, it added the explicit wipe option (on January
28, 2011); this change has also been merged into the Android Open Source Project. In
detail, this change adds a -w option to explicitly inform the make_ext4fs tool to wipe
the partition before formatting. The original intention is to use the BLKSECDISCARD
ioctl to erase the partition so that it avoids leaving any data content. As a result, if the
wipe option -w of make_ext4fs is ignored, the formatting will not wipe the old data on
partition, as it will be deliberated in the Android Recovery subsystem.

2.2. Android Storage System

2.2.1. Flash Memory Issue. Unlike the commodity personal computer, which uses mag-
netic storage devices such as hard drives, Android smartphones and tablets mainly
store data on the SoC with an embedded Multimedia Controller (eMMC) and the Solid
State Driver (SSD) as the internal memory [Wikipedia 2014]. The type of the internal
memory is primarily the NAND type flash memory [Wikipedia 2014]. One character-
istic of NAND flash is that its I/O interface does not provide a random-access external
address bus. Instead, data must be read on a blockwise basis, with typical block sizes of
hundreds to thousands of bits. Even if the erased data is part of a block, the entire block
should be overwritten. As a result, for a NAND flash memory, the deleted data is not
thoroughly erased right away but labeled as unused by the system. This characteristic,
however, leads to the data remain, obviously. In the only scenario in which the whole
block has been overwritten, the goal of thorough data erasure can be fulfilled.

The flash memory has a finite number of program-erase cycles, as most commer-
cially available flash products are guaranteed to withstand around 100,000 P/E cycles
before the wear begins to deteriorate the integrity of the storage. The corresponding

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence 61:5

data-processing mechanism of the OS must consider its physical characteristic and the
security-performance trade-off. Experimental results in Reardon et al. [2012] revealed
that the deleted data will remain in the flash memory until it is overwritten by other
operations. It implies a relatively longer residence time of the private data. The resi-
dence time increases with the size of the memory and decreases with the frequency of
memory use.

Another issue is that, even if data filling or rewriting is accomplished, it should be
carefully deployed to ensure effectiveness. Unlike a traditional hard disk, flash memory
has a unique data-writing management characteristic, which prevents the file system
from employing an in-place overwriting operation. If the file system commands the
storage medium to overwrite an existing data block, the on-board controller of the
memory may write the data into a new place while labeling the old data block as
unused. This implies that the data-remain issue is transparent to the upper layers in
Android.

2.2.2. Android File System Partition Specification. Like a normal hard disk drive, the in-
ternal storage medium of an Android device can be partitioned. The internal memory
usually consists of the following partitions:

—The /system partition contains the entire Android OS, other than the kernel and the
RAM disk. It includes the Android GUI and all the system applications that come
preinstalled on the device. This partition is, by default, mounted as read-only, for no
data modification is required during runtime.

—The /recovery partition holds a second bootable Linux system known as the Recovery
system. The Recovery subsystem can be seen as a rescue system allowing basic
operations on the device without booting into full Android. If the device enters the
recovery mode, the Recovery system is activated for performing advanced recovery
and maintenance operations, such as OTA update to Android Recovery Wiki 2015
[XDA Developers 2015b].

—The /data partition, also known as the /userdata partition, contains the user’s
data, such as contacts, SMS, settings, and all Android applications installed. If it is
erased, the Android system will return to the factory settings. The most valuable
private information of the users usually resides in this partition, which makes it the
preferred attack object.

—In addition, the /sdcard partition is special for Android devices. Often, it is not on
the internal memory of the device, but rather is on the external SD card. (However,
currently, manufacturers integrate the sdcard into the main internal memory for
performance purposes.) It is used to store nonsensitive files, such as media, docu-
ments, and downloaded files. On devices with both an internal and an external SD
card, the /sdcard partition is always used to refer to the internal SD card. For the
external SD card, if present, an alternative partition is used, which differs from
device to device.

Among those partitions, the /data partition is the most valuable one for data recovery
attacking.

2.2.3. Android Data Deletion. Generally, there are two operations related to data deletion
in Android.

The first is the common file deletion operation via system interface. In this case, even
when an explicit deleted file retention facility is not provided or when the user does
not use it, operating systems do not actually remove the contents of a file when it is
deleted unless they are aware that explicit erasure commands are required, such as
on an SSD. Instead, they simply remove the file’s entry from the file system directory,
because this requires less work on a NAND flash memory and is therefore faster, and

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

61:6 J. Shu et al.

Fig. 1. The TRIM feature.

the contents of the file—the actual data—remain on the storage medium. The data will
remain there until the OS reuses the space for new data.

Since Android 4.3, the OS issues the TRIM command to let the drive know that
it should no longer maintain the deleted data [Bell and Boddington 2010]. TRIM is a
garbage collection feature that helps negate write performance reduction in flash-based
storage devices; TRIM negates this by marking deleted data for the SSD controller to
erase while the device is idling, making sure that the cells holding deleted data are
erased and ready to be written on. Figure 1 shows the process of data deletion with the
TRIM feature activated.

With the TRIM feature, the Android OS informs the device which sectors are no
longer used (no longer contain valid data) and that the device does not need to keep
data content. Thus, the TRIM command helps to erase data more thoroughly due to its
low-level property. However, most current devices are not updated to support this new
property; thus, data remains may still exist. Moreover, a side effect of the TRIM feature
is that it may introduce observable data-deletion latency: the hardware controller may
not immediately recycle the data block.

The second operation is the factory reset operation for Android. Before an Android
device is reused, the owner would like to clear the storage to prevent accidental disclo-
sure of confidential data to the succeeding user. According to our study on the Recovery
subsystem (see Section 4), doing a factory reset is to reset the device to its initial state,
including removing all the data from the /data and /cache partition. As mentioned
earlier, the /data partition stores almost all the sensitive information related to the
user’s privacy. This operation triggers a data wiping against the entire partition that
contains most of the user’s sensitive information. Specifically, the factory reset gener-
ally asks the storage medium to use its low-level data wiping function (built-in ATA
command) to guarantee a secure data deletion.

3. ANDROID DATA-ERASING FLAWS

Note that the protection of privacy should cover the lifetime of the data, which begins
from data generation and extends to data transformation, calculation, transmission,
storing, until its deletion. Failure at any stage would cause an unexpected privacy leak.
To avoid this, a protection mechanism should be imposed throughout these stages. It

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence 61:7

should be mandatory for the end users to ensure that the private data on a device is
protected, and that it is thoroughly and securely erased when a file-delete operation
takes place, even if the attackers have the capability of recovering information from
metadata.

During its lifetime, the private data could be erased by the system’s data-deletion
operation in four scenarios: (1) generic file deletion, (2) app data clearing, (3) app
uninstallation, and (4) partition clearing. Except for generic file deletion, which is
easily observed, the other three operations are out of an app’s control. We have found
that failures in such data-erasure demands happen whenever the users intend to clear
confidential files, uninstall high-assurance apps, and factory reset their devices. In the
following, corresponding design flaws of these operations are discussed in detail.

3.1. Obscure File Deletion Flaw

The file deletion issue of flash memory is quite simple and well studied: if the file
deleting operation of the system has not thoroughly erased the data from the flash
memory, the content can be partially or fully retrieved. However, people often focus on
generic data deletion and recovery (e.g., recovering data on the sdcard of the device).
While this kind of insecure data deletion is well observed and can be enhanced on
the Android platform, privileged data’s deletion is discussed less often, which is more
obscure and may lead to even more sensitive private data leaks.

According to the design specification, the Android app stores its privileged data
in /data partition and the data is protected by Android’s sandbox mechanism. The
mutual access to this part of the data between applications is restricted; thus, it gives
the users an incorrect impression that the applications and the involved data are under
protection. However, the deletion operation to this part of data is often obscure. While
the sandbox protects the data at runtime, it does not consider the secure deletion when
a temporary file or the application reaches its completion. The ways that applications
delete files and system uninstall applications both lead to insecure file deletion. Yet the
application itself is seldom aware of this data-disposing process and cannot control the
deletion. In this situation, the obscurity of this process determines that the privileged
data is neither securely disposed of nor properly encrypted. Thus, data remanence
happens in a stealthy way.

More seriously, the prerequisite of a secure sandbox is that the root privilege has not
been overwhelmed, or else the sandbox cannot withstand any data theft intents from
outside the application, and the attacker is able to visit all the data in the memory. The
fact is, for many Android devices, root permission can be very easily obtained [XDA De-
velopers 2015a, 2015b]. If a device has been rooted, the /data partition can be dumped
and attacker could restore the data from the remanence without even implementing a
physical access to the storage medium.

Erasing the private data is expected to securely erase the files from the file system.
We argue that the obscurity in the app data deletion process controlled by Android may
cause the leak of sensitive data. An attacker can easily recover all the data remaining
on the disk by applying common disk recovery approaches [Wikipedia 2014]. With
the help of these recovered data, attackers can implement various attacks such as
grabbing sensitive information, obtaining decrypted secret data. In the following, two
ethical attacks are performed to verify our analysis.

We have studied two typical obscure file deletion scenarios in which the privacy leak
usually happens: (1) app data clearing, and (2) app uninstallation.

3.1.1. Insecure App Data Clearing. The first obscure data deletion operation is Android’s
Clear Data function for each app. This function is used to reset an app to its initial
state and clear an app’s privileged data that contains credential information such

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

61:8 J. Shu et al.

as browser history, cache, application login token and data encryption keys heavily
related to user’s privacy. In detail, the Android system uses the File.delete() API for
app data clearing. This API does not consider the secure data deletion requirement and
is insecure in data clearing. We locate the corresponding source code in the Android
Open Source Project (AOSP). After checking AOSP source code from 4.0.4 to 6.0.0, we
figure out the invoking chain of the File.delete() function:

initiateClearUserData()->
... ->

clearUserData()->
do_rm_user_data()->

delete_user_data()->
delete_dir_contents()->

unlinkat()

The File.delete() interface will invoke the remove() function in the Linux C Li-
brary, which then invokes unlink() and rmdir() syscalls for the file deletion operation.
Neither of the Linux syscalls does an additional thorough file erasing operation. There-
fore, this data clearing process does not meet the demand of secure erasure. While the
misunderstanding of security in File.delete() misleads users to believe that the priv-
ileged data has been thoroughly erased, it results in insecure data deletion operations
on the Android system.

3.1.2. Insecure App Uninstallation. Another security concern in obscure file deletion is
app uninstallation. The most common security concern for an application on Android
is whether the data that it saves on the device is accessible to illegal access. By de-
fault, files created on internal storage (more specifically, /data/data/pacakgeName
directory) are accessible only to the owner’s app. Because Android implements this iso-
lation, most applications tend to store sensitive data such as a database using internal
storage. These sensitive data, if retrieved, can be used to construct a similar context
and forge the identity of the app’s user.

During the app uninstallation, the Android system will not only remove the app’s
executable, but also delete all of the corresponding data of the app. Similar to the
data-clearing function, the default app uninstallation may also perform insecure data
deletion and the private data may still be leaked.

The Android OS performs app uninstallation with a relatively complex operation
sequence. We check the latest AOSP source code to confirm if the uninstallation is
vulnerable when the system still adopts the insecure data deletion. We found that the
app uninstallation triggers unlinkat() syscall, which operates in exactly the same way
as either unlink() or rmdir():

deletePackage()->
deletePackageAsUser()->

deletePackageX()->
deletePackageLI()->

removePackageDataLI()->
removeDataDirsLI()->

remove()->
uninstall()->

_delete_dir_contents()

Again, this system-level app privacy erasure operation does not consider the risk of
insecure data deletion, and is generally vulnerable to any common data recovery–based
attack.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence 61:9

3.2. Factory Reset Flaw

Factory reset is a functionality of the Android OS to clean all the metadata from the
/data and /cache partitions and thus reset the device to its initial state. It is designed
to be the last line of defense for data cleansing, taking into account the existing file-
deletion method in the underlying file system being incapable. However, due to its
capability of flash memory manipulation before booting the Android OS, the factory
reset operation is not implemented by the Android OS. Instead, it is performed by the
device’s Recovery subsystem. The Recovery subsystem is an Android-based lightweight
runtime environment parallel to the Android OS. The main functionalities of the Re-
covery subsystem include OTA system updating, factory reset, and so on.

For better user experience or installing other Android distribution versions, end
users would like to modify the original Recovery subsystem. Currently, the most pop-
ular alternative Recovery subsystems are CWM [2015] and TWRP [2015]. We have
intensively studied both of these Recovery subsystems, and found that neither provides
a reliable private data erasure mechanism, which means that the factory reset cannot
thoroughly erase all the data on the flash memory and the SD card (if there is any).
The official Recovery subsystem makes use of the interface provided by the ext4_utils
library to wipe the /data partition; in third-party Recovery, such as CWM and TWRP,
the factory reset command is implemented in its own way. They first parse the /sdcard
partition to check whether it is a virtualized partition part of /data partition. If so, the
Recovery subsystem executes the rm -rf command on each subdirectory in the /data
partition except for the subdirectory linked to the virtual /sdcard partition. Note that
the file deletion on NAND flash memory is not a reliable data deletion operation. The
rm deletes only the file index and not the metadata. Therefore, after the factory reset
operation, the metadata still remain on the /data partition.

After analyzing the source code of the third-party Recovery subsystems CWM and
TWRP on five devices, we found that this flaw exists in all the released versions. We
further tested devices with CWM and TWRP Recovery, and found out that if a device
is equipped with an external removable SD card, the vulnerability can be eliminated.

Unfortunately, not only the third-party Recovery subsystems are facing the unsafe
partition deletion. As we have studied, the original Recovery subsystems in Android 4.3
and earlier versions are also suffering from the same vulnerability. The applying of
TRIM or some other type of partition-clearing implementations are not able to erase
the data securely to offer a chance to recover the data from the remanence.

4. EXPERIMENT

4.1. Data Remanence Experiment

To validate our analysis and reveal the potential hazards that may be caused by data-
erasing flaws, we perform a series of experiments on mainstream Android devices and
observe the data-erasure situation.

4.1.1. Data Clearing. First, we evaluate the data remanence rate after a normal clear-
data operation on Android. The experiment is set up on a Sony Lt28h mobile phone
with Android 4.1.2. We first select 100 files of various types in an app’s privileged
sandbox environment, then perform a clear-data operation to erase those files on the
internal storage of the Sony Lt28h. After the clearing, the raw memory image of the
internal storage is dumped to perform common file recovering for the 100 chosen files,
and the file recovering rate is calculated. We repeat this deletion operation three times
with different files of different apps. The results are shown in Table II. As the results
show, if the privileged data is only cleared by the clear-data operation, it is actually not
effectively erased at all.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

61:10 J. Shu et al.

Table II. Data Remaining After Clear-Data
Operation on Sony Lt28H

File Set Size Data Remanence Rate

85.64MB 100%
150.63MB 100%
400.30MB 100%

Table III. Data Remanence Rate After App Uninstallation on Sony Lt28h

Exp WeChat QQ Microblog Facebook Snapchat All

#1 86/110 184/190 64/79 65/70 23/25 313/399
#2 79/79 160/160 73/78 66/70 13/15 358/426
#3 80/80 149/156 40/69 66/70 15/15 334/396

The second experiment that we performed uses a Galaxy Nexus 4 mobile phone with
Android 4.4.2, which belongs to one of our colleagues for daily use. As this device is
usually used as a mobile terminal to browse web pages with Chrome, the owner has
already cleared the relevant data to protect his privacy before contributing this device
to our experiment. We first dump the raw disk image of this device’s internal storage,
then we use state-of-the-art data recovering tools such as Recuva, Extundelete, and
UFS explorer to extract as many files as we can. With the help of a normal Chrome
application on another Android device as a template, we could pick up those files
belonging to Chrome from the recovered files. Finally, 275 files of Chrome are picked
up and some manual analyses are employed to extract a large number of private data,
such as browsed images, videos, browsing history, and cookies.

In conclusion, due to the obscurity of the data-clearing function of Android, the
insecure data deletion operation does not protect the owner of the device from avoiding
private data leakage, which may jeopardize the device owner seriously in real life.

4.1.2. App Uninstallation. To evaluate app uninstallation vulnerability, we perform com-
mon app uninstallation procedures on an Android device and observe the data-erasure
situation. We evaluate app uninstallation vulnerability using two devices. The first
device that we choose is a Sony Lt28h mobile phone with Android 4.1.2 (without the
TRIM feature). We would like to quantitatively evaluate the data remanence rate
of app uninstallation when a normal app uninstallation operation is performed. We
choose five typical Android apps to test, including WeChat, QQ, MicroBlog, FaceBook,
and SnapChat. For each app, we first install it and use it for a while. Then, we record
every file in the app’s internal storage directory. Finally, we uninstall the app, reboot
the operating system, then retrieve the raw disk image of the internal /data partition.
After acquiring the raw disk image, we conduct a common file-recovery approach to
extract as many files as possible, and calculate the file-recovery rate. For each app,
we repeat the experiment three times. We also perform one test operating five apps
concurrently. The results are shown in Table III. As the results show, almost 80% of
the data still remains.

The second device that we choose is a Samsung Galaxy S5 mobile phone with
Android 4.4.2 with TRIM feature enabled. The tested device is from a common user
and is in use for a long time. Before testing, all of the apps on this device are unin-
stalled. We perform the same attack on this mobile phone and find that, even with
the TRIM feature activated, the dumped raw disk image of /data partition still con-
tains a huge amount of sensitive data. In particular, we aim at attacking the WeChat
app, which is a very popular app in mainland China, with more than four hundred
million users, supporting not only online communication but also an online payment
service on this device. From the dumped raw disk image, we recover 1214 files from

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence 61:11

Fig. 2. Attack on WeChat app.

the /data/data/com.tencent.mm directory. These data are crucial, as both identify the
authentication token and message database. We transfer these data to another device
with a WeChat app just installed and successfully forge the identify of the original user.
As Figure 2 shows, not only can an attacker retrieve the chat record and friends list
information, but an attacker can also observe the online transaction information of the
app.

4.1.3. Factory Reset. Data remaining after factory reset is a widely existing threat
for the two most prevailing third-party Recovery subsystems, and once attackers try to
retrieve data from any secondhand device, over 90% of the data blocks will be recovered
for the next-step data content understanding. Given the metadata erasing flaw, it is
not difficult to construct a privacy retrieving attack. We test the metadata recovery
attack on five mainstream Android devices, including Nexus4, Nexus7, Galaxy S3,
Motorola MT917, and Sony Lt28h. Our experiment is conducted with the CWM and
TWRP Recovery subsystems. For each device-Recovery combination, three flash memory
images are dumped:

—the entire /data partition’s image, denoted as Imageo,
—the after third-party-Recovery factory reset image, denoted as Imagew, and
—after Reset, when the OS initiates the partition, the third image is obtained as Imagei.

We developed a different tool to observe the change of the data blocks in Imagew and
Imagei by comparing with Imageo. The results are listed in Table IV.

4.2. Deletion Latency on Android

Although we have discussed the flaws and root causes of file-delete operations on
Android, we also want to investigate how long the data remanence will exist. To further
determine the remanence period of improper deleted data, we conduct a long-term
experiment on deletion latency, which reflects the period between data deletion and its
actual removal from the storage medium. If the deletion latency can be ignored (e.g.,
several hours), deleted private data can be expected to be secure for the lack of attack
surface. However, if the deletion latency is long enough, the chance for the attacker to
retrieve the data is not negligible.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

61:12 J. Shu et al.

Table IV. Data Remaining After Data Wiping (in Imagew) and After Reboot (in Imagew) for Various Devices

Recovery Partition size SqLite block
Device version (Number of Blocks) count Imagew Imagei

ASUS Nexus 7 TWRP 2.6.3.1
6.01GB(1575680)

3714 92.55% 97.10%
(Android 4.4.2) CWM 6.0.4.3 2524 99.95% 99.14%

Samsung Galaxy S3 TWRP 2.7.0.0
11.5GB(3022848)

8915 99.83% 99.13%
(Android 4.2.2) CWM 6.0.4.6 973 99.97% 99.73%

Sony Lt28H TWRP 2.6.3.0
2.00GB(524288)

2904 0.48% 8.69%
(Android 4.4.2) CWM 6.0.3.0 5168 0% 0.49%

Motorola MT917 (Android 4.1.2) CWM 5.0.2.5 3.84GB(1007616) 2195 13.7% 14.88%
LG Nexus 4 TWRP 2.6.3.3

13.1GB(3449600)
11227 99.74% 97.49%

(Android 4.4.2) CWM 6.0.4.7 11476 99.9% 98.34%
Note: TWRP does not support MT917.

Table V. Device and File Set Information Regarding Deletion Latency Experiment

Device Disk Size Amount of files Maximal/Minimum
(Android Version) (Free/All) File set size (blocks) file size

Huawei Honor 4A (5.1.0) 2.5GB/8GB 42.4MB 222(10710) 25140KB/4KB
Nexus4 (4.4.2) 10.5GB/16GB 36.2MB 743(9119) 6370KB/4KB
Nexus5 (5.0.0) 4.1GB/16GB 57.5MB 336(14705) 8346KB/4KB

To measure the deletion latency of deleted data exposed to attackers, our experiment
records the actual data removal period of several apps’ private data on different Android
devices. We choose three mainstream Android devices (Huawei Honor 4A, LG Nexus4,
and LG Nexus5) as our experimental targets; these experimental devices are sent to
different testers for daily use. The information regarding devices and target files is
listed in Table V. All three devices contain a monitoring program that records the
occurrence of exact data removal events. Through more than 2mo of testing, how data
remanence changes is summarized.

The first step of our experiment is to label the deleted files’ location so that later
monitoring could be employed. Before deleting all the target files through common
Android file deletion API, we directly read and record the block id and block data of
each file. Then, we execute the delete operation to lead all the target blocks marked as
unused by the file system. Among the unused blocks, about one-third are adjacent, while
others are individually distributed on the disk. This distribution is an important feature
because the size of unused disk fragments will influence the file system’s recycling,
which is demonstrated in our testing, as follows.

We install a monitoring program with root privilege on each device to record the
changing of data remanence. After the deletion operations, the monitoring program
start to continuously scan all target blocks every hour, checking whether a block has
been actually overwritten and recording the remanence rate of all deleted data. Once
the monitoring program starts running, three devices are delivered to different volun-
teers for daily use. All volunteers are not aware of the details of the experiment to keep
their cellphone usage habits over the entire period of the experiment. After 2mo, we
reclaim the experiment devices and analyze the log of the monitoring program to reach
the final conclusions.

Figure 3 shows our experimental results, which reflect the relationship between
data remanence rate and time. We can see at a glance that, during the experiment,
the data remanence rate is continuously decreasing. However, even after 2mo of daily
operations, none of the three experiment devices has entirely wiped the target deleted

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence 61:13

Fig. 3. Data remanence rate of deleted files.

data. At least 40% of the target deleted data still remains on each of the three devices.
Particularly, the tested Nexus 4 smartphone reveals an approximate 90% data rema-
nence, which leads to a great possibility of data leakage. After a thorough analysis of
the log data, many other observations are made. First, individual unused blocks are
reused prior to adjacent unused blocks. According to the block allocation algorithm of
the ext4 file system, which follows a greedy strategy, the most suitable unused area is
always chosen for writing new data. For the Android system, small files such as web
browser logs, temporary records, and configuration files are more likely to be created
or modified during daily use. The operations on small files will cause the reallocation
of unused small-sized fragments; thus, the individual unused blocks are more likely
to be recycled. Second, we note that there are some significant declines in data rema-
nence rate during the experiment. These declines imply the allocation of some large
unused areas with adjacent unused blocks. We find that it is unusual for daily use to
trigger the allocation of a large file written on Android, as we only observe a few such
events. Thus, data in adjacent unused blocks are expected to stay longer than those in
individual unused blocks.

Another important conclusion drawn from our experiment is that there is no
remarkable relationship between deletion latency and disk size, although prior re-
search [Reardon et al. 2012] shows that the deletion latency of a log-structured file sys-
tem has a positive correlation with disk size in simulation experiments. But, according
to Figure 3, the disk size of Nexus5 is larger than Huawei Honor 4A, while the deletion

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

61:14 J. Shu et al.

latency of Nexus5 is obviously shorter than Huawei Honor 4A. In our experiment, we
find that the actual deletion latency mainly depends on user behavior and disk block
distribution.

4.3. Recovering from Incomplete Data Fragments

In the previous sections, we used normal file/data-recovery utilities such as dd, recuva,
or extundelete to recover deleted files. The integrity of deleted data and file system
metadata (e.g., journal) is mandatory for normal data-recovery utilities. However, the
result of deletion latency experiment shows that such integrity may be broken after
being used for a long time. In this context, a significant amount of valuable data still
remains in the incomplete data fragments.

To assess the data-remain issue in this situation, we implemented DataRaider, which
adopts a file-carving technique to recovery files from crumbs. It is implemented as an
automated sensitive information–recovering framework for evaluating data remains
when the integrity of remaining data is broken.

File carving is a useful technique for recovering specific types of files from data
fragments. Here, we choose an SQLite Database file as our target because Android
suggests that app uses SQLite database to store data that are frequently queried.
Most of the confidential data in Android are managed with SQLite3 DBMS and
are stored as a .db file in the userdata partition, according to the Android devel-
opment document’s recommendation. Typical databases for system applications in-
clude short message (mmssms.db), contacts information (contacts2.db), system setting
(settings.db), keychain (grants.db), and schedule (calendar.db). Except for the standard
system apps, a huge amount of third-party apps also store their data using the SQLite
interface.

As the target of DataRaider is to recover deleted files from the wiped devices, its re-
covery process focuses on reconstructing the SQLite database on the userdata partition.
The entire recovery process is shown in Figure 4.

While common ext4 data-recovery techniques often rely on the journaling feature to
boost the data recovery [Kim et al. 2012], we aim at recovering remaining data without
any support from the file system.

DataRaider starts with an disk image file. It is split into data blocks first and analyzes
the data blocks directly.

First, it extracts data blocks from the /userdata partition. We investigated more than
20 devices, and found that all of them adopt a 4KiB block size for the ext4 file system’s
choice. Moreover, we also find that more than 95% of the SQLite databases adopt the
page size as the same as the ext4 block size. Thus, the splitting of the raw disk image
separates the entire data into units of 4KiB.

Second, DataRaider discriminates every block to filter out potential SQLite pages.
A typical SQLite3 database file consists of multiple pages. The size of one page is
defined in the database file’s header. Generally, SQLite on Android uses a 4KB sized
page corresponding to the ext4 file system’s default block size. The page number starts
from 1 and continues in one database file. The first page is the SQLite3 header page,
which is crucial for a database file, because it contains the header and the master table
sqlite_master of this database. Except for the header page, a SQLite database can also
contain other types of pages, among which is the one we are interested in: the b-tree
page. SQLite DBMS uses the b-tree page to store the meta structure and data content.
A SQLite3 database can be approximately seen as a tree whose root is the header
page, and most of its child nodes and leaf nodes are the b-tree page [SQLite 2015]. The
identification of the SQLite3 data page relies on the internal structure of the SQLite3
b-tree page. A SQLite3 b-tree page stores one or multiple data records of the database.
Ideally, the file will be allocated consecutive blocks [Kim and Kim 2012]. This causes

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence 61:15

Fig. 4. Sensitive information extraction process.

data blocks of the same file to be close together. We’ll use this fact to restrict where we
search for deleted data. Then our discriminator will group one or multiple consecutive
pages as a bundle. It will continually analyze the block until meeting a block that does
not meet the rule. After this process, DataRaider stores the bundles in a cargo for
further file reconstruction.

The last step is to perform an SQLite database reconstruction procedure to recover
sensitive information as much as possible. For bundles in the bundle cargo, DataRaider
categorizes them as three types: intact bundle, tailless bundle, and headless bundle.
Intact bundle denotes a group of consecutive blocks that is already a complete database
file. Tailless bundle is a group of consecutive blocks that contains an SQLite3 header
page but is not an intact database. Headless bundle denotes a group of consecutive
data pages. In the recovery process, now that an intact bundle is already a recovered
database, the reconstruction of a database mainly tries to fix a tailless bundle with a
header page to an intact database. According to the header page contained in a tailless
bundle, DataRaider could determine the original size of the database and calculate the
size of the lacked part (we denote the size as L). Then, it tries to supplement one tailless
bundle with other headless bundles. DataRaider searches for a set of headless bundles
with the total size equal to L, and tries to combine those bundles with the tailless
bundle, then verifies whether it is a valid database file. This process is iteratively
employed until every headless bundle is tested.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

61:16 J. Shu et al.

Table VI. Recovered Data Proportion of Sensitive Information
Related Database on Various Devices

Data
Device Database Origin Size Recovered

Nexus4

SMS 428KB 2.8%
Contact 1184KB 84%

KeyChain 20KB 100%
System
Setting

88KB 100%

Calendar 164KB 7.3%
3rd APP
(WeChat)

1112KB 100%

Galaxy
S3

SMS 292KB 62%
Contact 1024KB 72%

KeyChain 20KB 100%
System
Setting

140KB 100%

Calendar 388KB 47%

Nexus 7

Contact 904KB 39.8%
KeyChain 20KB 100%

System
Setting

76KB 15.8%

Calendar 160KB 77%

We evaluate the functionality of DataRaider on three Android devices (Nexus4,
Galaxy S3, and Nexus 7). We try to restore the database of SMS, contact list, key-
chain, system setting, and more. After a factory reset operation, we use the devices for
several days. Then, we put those devices into the recovery test. The results are listed
in Table VI. Except for very few entries, almost all private information has been suc-
cessfully restored by performing sophisticated data retrieval to a certain extent. This
experiment reveals that a lot of extractable sensitive data has been left on the disk
while some data blocks were missing and the integrity of data was compromised.

We evaluate the performance of DataRaider by comparing the time cost with a well-
known stream file-carving tool Foremost [SourceForge 2015].

Foremost is one of the first file carvers that implements a sequential header to footer
file carving by the file’s header and its size. Carving SQLite database files is difficult
for common file-carving tools because of the missing footer and the size of the file. To
provide a better solution, DataRaider adopts a customized file reconstruction stage
right after discriminating related blocks from the disk image. Despite more time cost,
this stage makes DataRaider competent to recover the SQLite database files.

We divide the whole recovery process into two stages for DataRaider, discrimination
and reconstruction. In our experiment, Foremost has been applied to carve the common
application file types (e.g., pdf, jpg, png, bmp, mp3) from the given disk images. It does
not write any detected files back to the disk. DataRaider is used for carving SQLite
database files without writing reconstructed files back to the disk. The experiment
is implemented on a PC with Intel i3-2120 and 16GB RAM. Both DataRaider and
Foremost are used to analyze a 2GB disk image 10 times.

On average, the results show that the discrimination stage of DataRaider cost 65.06s
and the reconstruction stage cost 42.54s, and it has successfully recovered 243 SQLite
database files. Foremost cannot recover SQLite database files. Instead, it costs 60.37s
to recover 444 common application files.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence 61:17

The recovery process for Foremost and the discrimination stage of DataRaider have
cost equivalent time. The need for both of them to parse the whole disk image cannot
be neglected. The next stage for DataRaider consumes some extra time on reconstruct-
ing the SQLite database files, which is in an acceptable range considering the extra
functionality it provides over Foremost.

Our experiment shows that the overall performance of DataRaider is comparable
with mainstream file-carving tools.

5. MITIGATION

As an open platform, the Android system has various inevitable implementations. The
fragmentation of Android systems has ignited discussions on many security topics.
One is the vulnerable data wiping in the Android system. As its various causes among
myriad versions, there has been difficulty in finding an all-in-one solution for secure
data clearing. The battle between data clearing and recovery will continue.

Various techniques have been developed to resist recovery attacks. The widely known
methods include overwriting-based secure deletion, data encryption, and physical de-
struction of the device. In this article, we only focus on software-assistant data deletion.

Studies claim that with the TRIM feature, the Android OS can issue TRIM commands
to wipe the entire drive in seconds [King and Vidas 2011]. Another aspect of study
focuses on secure deletion, which has been studied in a variety of contexts and has also
been extensively surveyed [Wei et al. 2011; Reardon et al. 2012, 2013]. Secure deletion
is the basis of private data erasure, but unfortunately is very hard to implement
correctly on most mobile devices. Wei et al. [2011] empirically evaluate the effectiveness
of erasing data from flash-based SSDs. Their conclusion is that none of the available
software techniques for sanitizing individual files was effective, although the proposed
attack requires laboratory data recovery techniques and equipment. Moreover, Reardon
et al. [2012] thoroughly discussed secure deletion at the user level. They propose two
user-level solutions that have achieved secure deletion. Leom et al. [2016] conducted
a comparative summary of existing approaches to realize secure flash storage deletion
and identified existing limitations with experiments.

We support the idea of data encryption as an efficient protection strategy. When the
encrypted data is about to be deleted, securely disposing of the encrypted key rather
than wiping the data is easier to achieve than an equally secure deletion. However,
achieving a robust and efficient encryption scheme may involve many issues, including
performance overhead and key management, for example, the Android’s Full Disk
Encryption (FDE) scheme. Although it has kept evolving since Android 3.0, it still has
been restricted by many user-level applicability and compatibility factors; the security
bound is thus reduced. We will detail the flaws of FDE in Section 6.

Lee et al. [2008] has designed a NAND flash file system with a secure deletion
functionality. This method uses the idea of encryption. It requests that all the keys of
a specific file be stored on the same block. Therefore, only one erasing operation on
the key files is required to securely delete the data files. However, their work supports
only the YAFFS file system, yet current Android devices generally adopt the ext4 file
system. Wang et al. [2012] present a FUSE (Filesystem in USErspace) encryption file
system for Android. The proposed encrypted file system introduces about 20 times
performance overhead than the normal system.

The trusted SQLite database storage [Luo et al. 2013] is another option when perfor-
mance is a major concern, although we have to remember that the lightweight SQLite
database encryption solution is less secure than full-disk encryption. At the system-
booting phase, it is faster to load an encrypted database than an encrypted partition.
Also, these sensitive files are decrypted on-the-fly only when legitimate users are un-
locking and using the phone. In addition, to reload the encrypted database is of little

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

61:18 J. Shu et al.

cost, thus each time the screen is locked, the system could erase decrypted data in
memory directly and no sensitive data is stored. This means that even if the attacker
has direct access to the remaining data, the attacker still cannot get any useful data.
Thus, the sensitive files are well protected.

Another possible mitigation can be an application-level security enhancement. One
of the implementations can be hooking the key libC functions related to disk I/O.
Wrapped by some cryptographic operations, the data writes to the disk in cipher text
form. It would be satisfying for both security and efficiency purposes.

Given the present situation of Android OS fragmentation, this method provides
transparent encryption that adapts to almost all Android versions without interrupting
the device user. Compared to system modification schemes or upgrading the OS to a
higher version, such as Android Jelly Bean or Lollipop, a more realistic solution users
would prefer is a simple way to deploy security enhancement on their applications.

6. RELATED WORK

6.1. Data Recovery

Many data-recovery methods designed for PCs have been applied on mobile devices,
such as file recovery and file carving [Kim et al. 2012; SourceForge 2013; Piriform
2015]. While the ext4 file system provides many improved features, one of its features,
journaling, can be leveraged to boost data recovery. Journaling is a technique employed
by many file systems in crash recovery situations. Tools such as extundelete can recover
files immediately after parsing the ext4 file system’s journal, usually within a few
minutes. The contents of an inode can be recovered by searching the file system’s
journal for an old copy of that inode. Then, that information can be used to determine
the file’s location within the file system [Fairbanks et al. 2010].

JDForensic [Kim et al. 2012] is a tool aiming to analyze the journal log area in
ext4 file systems and extract journal log data to recover deleted data and analyze user
actions. Extundelete [SourceForge 2013] is another popular open-source tool focusing
on recovering files from a disk with ext3 and ext4 file systems. It is able to recover the
contents of an inode by searching the file system’s journal for an old copy of that inode.
However, if the supporting journal information is broken or missing, both tools are not
able to recover any files.

Close to our research, there are many studies focusing on direct data recovery using
both forensics and physical access. Our work is generally based on these studies, but we
focus on data-erasure failure and related concrete threats rather than data remanence
and extraction. A direct approach to data extraction is to read the internal memory
through the boundary-scan (JTAG) test pins. Breeuwsma et al. [2006] introduce the
details of using a JTAG test access port to access memory chips directly. This approach
is feasible for when a phone is locked and cannot be accessed via USB cable. The
disadvantage is that the mobile device needs to be disassembled, which requires specific
analyzing equipment and knowledge to achieve.

Another acquisition of Android memory images proposed by FROST [Müller and
Spreitzenbarth 2013] is against full disk encryption. It focuses on breaking disk en-
cryption of Galaxy Nexus devices. Again, it requires a complicated experimental envi-
ronment to carry out the attack.

There are also studies aimed at specific resources on Android. Do et al. [2015] propose
an adversary model to facilitate forensic investigations of mobile devices. An evidence
collection and analysis methodology for Android devices is provided in this article. With
the help of this methodology, Do and Choo extract information of forensic interest in
both the external and internal storage of six chosen mobile devices.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence 61:19

Leom et al. [2015] provide a study of thumbnail recovery in Android. They examine
and describe the various thumbnail sources in Android devices and propose a method-
ology for thumbnail collection and analysis from Android devices.

Immanuel et al. [2015] study the diversity of cache formats on Android and provide
a taxonomy of them based on app usage. Using this taxonomy as a base, they propose
a systematic process, known as the Android Cache Forensic Process, to forensically
classify, extract, and analyze Android caches.

6.2. FDE Flaw

Since Android 3.0, Google has provided full-disk encryption (FDE) as an optional secu-
rity service. FDE derives from the dm-crypt feature in Linux. The user can choose to
activate the FDE service from the system settings.

Since the Android OS version 5.0 (Lollipop), the full-disk encryption mechanism
has been improved to counter brute-force attacks and has enabled full crypto features
by default. Being similar to iOS, it adopts hardware-assist encryption and implements
per-app encryption as well. Google has claimed that Lollipop would introduce hardware
support to enhance security strength and boost cryptographic process speed.

However, a weaker full-disk encryption is still prevalent in Android app markets,
which would lead to easy recovery of the data. The early versions, such as Jelly Bean
(versions 4.1–4.3.1) and Kitkat (versions 4.4–4.4.4) are still in use. Until May 2014,
Android Jelly Bean was still the dominant OS version in the Android ecosystem. An-
droid Jelly Bean provides a weaker full-disk encryption that would make brute-force
attack on the encryption keys much easier [Elenkov 2014].

First, due to the lack of the hardware encryption chip’s support, the master key for
FDE is generated from the Android lockscreen passcode. The encryption parameters
for calculating the secret keys are stored on a special structure in a disk partition called
the crypto footer. Before Android 5.0, the attacker is capable of launching a brute-force
attack against the PIN by analyzing the specific information in the structure to ob-
tain the encryption key. If the encryption key is acquired, data remanence is again the
source of private data leaking. According to disk encryption [Elenkov 2014], for the FDE
scheme before Android 4.4, the popular brute-force attacking tool hashcat can achieve
more than 20,000 PBKDF2 hashes per second on a notebook with NVIDIA GeForce
730M, and recovers a 6-digit PIN in less than 10s. On the same hardware, a 6-letter
(lowercase only) password takes about 4h. Considering the custom of users (less people
would like to set a complex lockscreen passcode and repeatedly input it every time), re-
covering the master key of FDE in a reasonable time is quite possible. For Android 4.4.x,
the complexity of brute-force attack is increased, but still feasible. This simply restricts
the attacker to recovering a passcode in a relative longer time period.

Second, postulating the using of a third-party Recovery subsystem, FDE would face
an even worse situation. As we have deliberated in the previous sections, the ineffective
implementation rm command in some Recovery systems has caused the inability to wipe
the data content on the disk. In this case, the encrypted metadata have been kept intact.
With the help of the encryption key retrieving attack, the complete content on the disk
can be revealed.

In a word, the FDE scheme before Android 5.0 is not as effective as expected. A more
robust data protection requires a better encryption scheme to thoroughly eliminate the
threat of data remanence.

7. CONCLUSIONS

In this work, we analyze several defects in the Android system, such as data remain-
ing after data clearing, app uninstallation, and even factory reset. To prevent private
data leak caused by recovering the data remaining, three aspects of data erasure must

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

61:20 J. Shu et al.

be implemented: generic file deletion, app uninstallation, and metadata erasure. Due
to various reasons, private data erasure fails in many ways. We perform a system-
atic study on the impact of imperfect data erasure operations, and demonstrate how
the attackers manage to recover sensitive information in three scenarios: generic file
deletion, app uninstallation and factory reset. Essentially, the primary cause of erasure
failure is the inefficient implementation on file operations and the third-party Recovery
system implementation flaws.

As do other successful operating systems, Android provides agility and convenience
to smartphone users, but its software designers should consider more security en-
hancement at the design phase. Confidential information exists in the Android system
as generic files, information residing in an app, or metadata on flash memory. In this
work, we exhibit how it has been ignored and has caused serious data remanence in
Android systems. Data wiping is more important in the mobile environment than in
the traditional computing context. In addition to hardware-assist security enhance-
ment such as TrustZone, we hope to propose some OS-level data wiping or protection
mechanism for the Android ecosystem in the future.

REFERENCES

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le
Traon, Damien Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for Android apps. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’14). ACM, New York, NY,
259–269. DOI:http://dx.doi.org/10.1145/2594291.2594299

Abdullah Azfar, Kim-Kwang Raymond Choo, and Lin Liu. 2015. Forensic taxonomy of popular Android
mHealth apps. arXiv preprint arXiv:1505.02905 (2015).

Abdullah Azfar, Kim-Kwang Raymond Choo, and Lin Liu. 2016a. An Android communication app forensic
taxonomy. Journal of Forensic Sciences 61, 5, 1337–1350.

Abdullah Azfar, Kim-Kwang Raymond Choo, and Lin Liu. 2016b. Android mobile VoIP apps: A survey and
examination of their security and privacy. Electronic Commerce Research 16, 1, 73–111.

Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von Styp-Rekowsky.
2013. AppGuard: Enforcing user requirements on Android apps. In Proceedings of the 19th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’13). Springer,
Berlin, 543–548. DOI:http://dx.doi.org/10.1007/978-3-642-36742-7_39

Steven Bauer and Nissanka Bodhi Priyantha. 2001. Secure data deletion for Linux file systems. In Usenix
Security Symposium, Vol. 174.

Graeme B. Bell and Richard Boddington. 2010. Solid state drives: The beginning of the end for current
practice in digital forensic recovery? Journal of Digital Forensics, Security and Law 5, 3, 1–20.

Ing Breeuwsma and others. 2006. Forensic imaging of embedded systems using JTAG (boundary-scan).
Digital Investigation 3, 1, 32–42.

Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. 2013. Flexible and fine-grained mandatory access
control on Android for diverse security and privacy policies. In Usenix Security. 131–146.

CWM. 2015. ClockworkMod Recovery. Retrieved December 6, 2016 from https://www.clockworkmod.com.
Quang Do, Ben Martini, and Kim-Kwang Raymond Choo. 2015. A forensically sound adversary model for

mobile devices. PloS One 10, 9, e0138449.
Nikolay Elenkov. 2014. Revisiting Android disk encryption. http://nelenkov.blogspot.com/2014/10/revisiting-

android-disk-encryption.html. (2014).
William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon

Jung, Patrick McDaniel, and Anmol N. Sheth. 2014. TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Transactions on Computer Systems 32, 2, Article 5,
29 pages. DOI:http://dx.doi.org/10.1145/2619091

Ext4 Wiki. 2015. Ext4 and Ext2/Ext3) Wiki. Retrieved December 6, 2016 from https://ext4.wiki.kernel.org/
index.php/Main_Page.

Kevin D. Fairbanks, Christopher P. Lee, and Henry L. Owen III. 2010. Forensic implications of EXT4. In
Proceedings of the 6th Annual Workshop on Cyber Security and Information Intelligence Research. ACM,
22.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1007/978-3-642-36742-7_39
https://www.clockworkmod.com
http://nelenkov.blogspot.com/2014/10/revisiting-android-disk-encryption.html
http://nelenkov.blogspot.com/2014/10/revisiting-android-disk-encryption.html
http://dx.doi.org/10.1145/2619091
https://ext4.wiki.kernel.org/ ignorespaces index.php/Main_Page
https://ext4.wiki.kernel.org/ ignorespaces index.php/Main_Page

Why Data Deletion Fails? A Study on Deletion Flaws and Data Remanence 61:21

ForensicsWiki. 2014. Solid State Driver Forensics. Retrieved December 6, 2016 from http://www.
forensicswiki.org/wiki/Solid_State_Drive_(SSD)_Forensics.

Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. 2014. ASM: A programmable
interface for extending Android security. In Proceedings of the 23rd USENIX Conference on Secu-
rity Symposium (SEC’14). USENIX Association, Berkeley, CA, 1005–1019. http://dl.acm.org/citation.
cfm?id=2671225.2671289

Felix Immanuel, Ben Martini, and Kim-Kwang Raymond Choo. 2015. Android cache taxonomy and forensic
process. In IEEE Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 1094–1101.

JEDEC. 2014. Flash Memory. Retrieved from http://www.jedec.org/category/technology-focus-area/flash-
memory-ssds-ufs-emmc.

Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Foster,
and Todd Millstein. 2012. Dr. Android and Mr. Hide: Fine-grained permissions in Android applications.
In Proceedings of the 2nd ACM Workshop on Security and Privacy in Smartphones and Mobile Devices.
ACM, 3–14.

Dohyun Kim, Jungheum Park, Keun-gi Lee, and Sangjin Lee. 2012. Forensic analysis of Android phone
using Ext4 file system journal log. In Future Information Technology, Application, and Service. Springer,
435–446.

Hyeong-Jun Kim and Jin-Soo Kim. 2012. Tuning the Ext4 filesystem performance for Android-based smart-
phones. In Frontiers in Computer Education. Springer, 745–752.

Christopher King and Timothy Vidas. 2011. Empirical analysis of solid state disk data retention when used
with contemporary operating systems. Digital Investigation 8, S111–S117.

Kenneth C. Kung. 1993. Secure file erasure. (Nov. 23 1993). US Patent 5,265,159.
Jaeheung Lee, Junyoung Heo, Yookun Cho, Jiman Hong, and Sung Y. Shin. 2008. Secure deletion for NAND

flash file system. In Proceedings of the 2008 ACM Symposium on Applied Computing. ACM, 1710–1714.
Ming Di Leom, Kim-Kwang Raymond Choo, and Ray Hunt. 2016. Remote wiping and secure deletion on

mobile devices: A review. Journal of Forensic Sciences 61, 6, 1473–1492.
Ming Di Leom, Christian Javier DOrazio, Gaye Deegan, and Kim-Kwang Raymond Choo. 2015. Forensic

collection and analysis of thumbnails in Android. In IEEE Trustcom/BigDataSE/ISPA, Vol. 1. IEEE,
1059–1066.

Yuhao Luo, Dawu Gu, and Juanru Li. 2013. Toward active and efficient privacy protection for Android. In
Proceedings of the International Conference on Information Science and Technology (ICIST’13). IEEE,
924–929.

Tilo Müller and Michael Spreitzenbarth. 2013. FROST. In Applied Cryptography and Network Security.
Springer, 373–388.

Piriform. 2015. Recuva. Retrieved December 6, 2016 from https://www.piriform.com/recuva.
Hal Pomeranz. 2010. Understanding ext4. Retrieved from http://digital-forensics.sans.org/blog/2010/12/

20/digital-forensics-understanding-ext4-part-1-extents.
Darren Quick and Kim-Kwang Raymond Choo. 2013a. Digital droplets: Microsoft SkyDrive forensic data

remnants. Future Generation Computer Systems 29, 6, 1378–1394.
Darren Quick and Kim-Kwang Raymond Choo. 2013b. Forensic collection of cloud storage data: Does the act

of collection result in changes to the data or its metadata? Digital Investigation 10, 3, 266–277.
Joel Reardon, David Basin, and Srdjan Capkun. 2013. Sok: Secure data deletion. In Proceedings of the IEEE

Symposium on Security and Privacy (SP’13). IEEE, 301–315.
Joel Reardon, Claudio Marforio, Srdjan Capkun, and David Basin. 2012. User-level secure deletion on log-

structured file systems. In Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security. ACM, 63–64.

SourceForge. 2013. extundelete. Retrieved December 6, 2016 from http://extundelete.sourceforge.net/.
SourceForge. 2015. Foremost. Retrieved December 6, 2016 from http://foremost.sourceforge.net/. (2015).
SQLite. 2015. SQLite3 File Format. Retrieved December 6, 2016 from https://www.sqlite.org/fileformat.html.
TWRP. 2015. Team Win Recovery Project. Retrieved December 6, 2016 from http://teamw.in/project/twrp2.

(2015).
Zhaohui Wang, Rahul Murmuria, and Angelos Stavrou. 2012. Implementing and optimizing an encryp-

tion filesystem on Android. In Proceedings of the IEEE 13th International Conference on Mobile Data
Management (MDM’12). IEEE, 52–62.

Michael Wei, Laura M. Grupp, Frederick E. Spada, and Steven Swanson. 2011. Reliably erasing data
from flash-based solid state drives. In Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST’11). USENIX Association, Berkeley, CA, 8–8. http://dl.acm.org/citation.
cfm?id=1960475.1960483

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

http://www. forensicswiki.org/wiki/SolidStateDrive(SSD)Forensics
http://www. forensicswiki.org/wiki/SolidStateDrive(SSD)Forensics
http://dl.acm.org/citation.cfm?id=2671225.2671289
http://dl.acm.org/citation.cfm?id=2671225.2671289
http://www.jedec.org/category/technology-focus-area/flash- ignorespaces memory-ssds-ufs-emmc
http://www.jedec.org/category/technology-focus-area/flash- ignorespaces memory-ssds-ufs-emmc
https://www.piriform.com/recuva
http://digital-forensics.sans.org/blog/2010/12 /20/digital-forensics-understanding-ext4-part-1-extents
http://digital-forensics.sans.org/blog/2010/12 /20/digital-forensics-understanding-ext4-part-1-extents
http://extundelete.sourceforge.net/
http://foremost.sourceforge.net/
https://www.sqlite.org/fileformat.html
http://teamw.in/project/twrp2
http://dl.acm.org/citation. ignorespaces cfm?id$=$1960475.1960483
http://dl.acm.org/citation. ignorespaces cfm?id$=$1960475.1960483

61:22 J. Shu et al.

Wikipedia. 2014. Flash Memory: SSDs, UFS, e.MMC. Retrieved December 6, 2016 from http://en.wikipedia.
org/w/index.php?title=Flash_memory.

Chiachih Wu, Yajin Zhou, Kunal Patel, Zhenkai Liang, and Xuxian Jiang. 2014. AirBag: Boosting
smartphone resistance to malware infection. In Proceedings of the 21st Annual Network and
Distributed System Security Symposium (NDSS’14). Retrieved from http://www.internetsociety.org/
doc/airbag-boosting-smartphone-resistance-malware-infection.

XDA Developers. 2015a. Rooting. Retrieved December 6, 2016 from http://forum.xda-developers.com/
wiki/Root.

XDA Developers. 2015b. Android Recovery Wiki. Retrieved December 6, 2016 from http://forum.xda-
developers.com/wiki/Recovery.

R. Xu, H. Saidi, and R. Anderson. 2012. Aurasium: Practical policy enforcement for Android applications. In
Proceedings of the 21st USENIX Conference on Security.

Received November 2015; revised October 2016; accepted October 2016

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 61, Publication date: January 2017.

http://en.wikipedia.org/w/index.php?title=Flashmemory
http://en.wikipedia.org/w/index.php?title=Flashmemory
http://www.internetsociety.org/ ignorespaces doc/airbag-boosting-smartphone-resistance-malware-infection
http://www.internetsociety.org/ ignorespaces doc/airbag-boosting-smartphone-resistance-malware-infection
http://forum.xda-developers.com/wiki/Root
http://forum.xda-developers.com/wiki/Root
http://forum.xda-developers.com/wiki/Recovery
http://forum.xda-developers.com/wiki/Recovery

