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Abstract—Existing tools for the automated detection of mem-
ory corruption bugs are not very effective in practice. They
typically recognize only standard memory management (MM)
APIs (e.g., malloc and free) and assume a naive paired-use
model—an allocator is followed by a specific deallocator. How-
ever, we observe that programmers very often design their own
MM functions and that these functions often manifest two major
characteristics: (1) Custom allocator functions perform multi-
object or nested allocation which then requires structure-aware
deallocation functions. (2) Custom allocators and deallocators
follow an unpaired-use model. A more effective detection thus
needs to adapt those characteristics and capture memory bugs
related to non-standard MM behaviors.

In this paper, we present a MM function aware memory bug
detection technique by introducing the concept of structure-aware
and object-centric Memory Operation Synopsis (MOS). A MOS
abstractly describes the memory objects of a given MM function,
how they are managed by the function, and their structural
relations. By utilizing MOS, a bug detection could explore much
less code but is still capable of handling multi-object or nested
allocations and does not rely on the paired-use model. In addition,
to extensively find MM functions and automatically generate
MOS for them, we propose a new identification approach that
combines natural language processing (NLP) and data flow anal-
ysis, which enables the efficient and comprehensive identification
of MM functions, even in very large code bases.

We implement a MOS-enhanced memory bug detection system,
GOSHAWK, to discover memory bugs caused by complex and
custom MM behaviors. We applied GOSHAWK to well-tested
and widely-used open source projects including OS kernels,
server applications, and IoT SDKs. GOSHAWK outperforms the
state-of-the-art data flow analysis driven bug detection tools
by an order of magnitude in analysis speed and the number
of accurately identified MM functions, reports the discovered
bugs with a developer-friendly, MOS based description, and
successfully detects 92 new double-free and use-after-free bugs.

I. INTRODUCTION

Replacing the painstaking and meticulous manual code
review with automated bug detection is promising [1], but a
major limitation of most current bug detection tools is that
their underlying program analysis techniques are not aware
of the high-level semantics of certain functions. Because of
such a limitation, existing tools are either time-consuming
to use and unable to scale for large code bases, such as
the Linux kernel, or suffer from imprecise program analysis

results when the code structure is very complex. An important
case is the detection of memory bugs (e.g., use-after-free and
double-free). Ideally, a simple static analysis could be applied
to track the lifetime of dynamic memory objects allocated
and deallocated by memory management (MM) functions
(e.g., malloc and free) and detect those bugs. In practice,
however, such a straightforward approach would not work
due to scalability issues, especially when analyzing code bases
with billions of code lines and complex structures. In addition,
the bug reports, returned by static analysis tools, typically
contain very complicated data flows, which are difficult for
code reviewers to read and confirm [2]. In response, recent
efforts have enhanced bug detection by identifying more non-
standard MM functions and simplifying their related data
flow. NLP-EYE [3] and Susi [4] leverage a MM function
summary based data flow analysis to tackle scalability. They
use either a manual or a machine learning based custom
MM functions identification to find MM behaviors in source
code, and abstract them to obtain a more concise data flow.
SinkFinder [5] adopts an alternative bug detection model that
only tracks the data flow between pairs of interested functions;
K-MELD [6] and HERO [7] also capture the pair relationship
between memory allocation and deallocation to avoid a heavy
data flow analysis of the function implementation.

Unfortunately, those approaches are still unable to provide
extensive and yet precise analyses of MM functions especially
the custom ones, and thus miss many critical memory bugs.
❶ The techniques used by those approaches for detecting MM
functions in the code are either not general enough to deal with
different kinds of source code projects, as implementations
of MM functions in different projects vary significantly, or
not accurate and suffer from high false positives. ❷ The MM
summarization strategies used by those approaches fall short
of describing the behaviors of MM functions precisely. To
support sophisticated management of dynamic memory objects
with complex structures, many custom MM functions perform
multi-object or nested allocation. A custom MM function may
allocate/release multiple memory objects in one invocation
that may relate to each other according to a specific struc-
ture, whereas a standard memory allocator/de-allocator only



handles one memory object (a consecutive memory buffer) at
a time. Moreover, while most existing bug detection models
assume that an allocation only matches one deallocation, in
real-world source code such an assumption is often violated.
A compound structure containing multiple dynamic memory
objects allocated by a custom memory allocator could be
released either by invoking the corresponding custom deal-
locator, or by invoking a standard deallocator to release each
object separately.

To implement an effective memory bug detection, we need
an approach not only scalable to handle millions of lines
of code but also precise enough to capture the complicated
structure of memory objects, and the semantics and unique
usage of MM functions. Custom MM functions “conceal” the
complicated structure of memory objects and the operations
on them, which makes it difficult for developers to understand
their correct use. In this paper, we propose a new concept—
structure-aware and object-centric Memory Operation Synop-
sis (MOS)—to address the fundamental problems when en-
countering MM functions. In brief, a MOS is a tuple that com-
prises a primary function name, a primary property (allocation
or deallocation) and a list of dynamically managed memory
objects occurring in either a return value or parameters of
the function. It summarizes the structural relations of memory
objects in MM functions. Because how a memory object
should be operated on by an MM function depends on its
structure, a MOS focuses on the object (hence object-centric)
and its structure (hence structure-aware). Moreover, a MOS
not only captures the structure of memory objects, but also
describes the function property (allocation or deallocation)
against each object.

For each MM function, we can generate an associated MOS
to describe its MM behaviors. By integrating MOS, a bug
detection process does not need to explore the internal imple-
mentation of all MM functions but can still precisely model the
dynamically managed memory objects. In addition, a MOS-
based bug detection allows one to remove the assumption
that the paired-use model is used and to instead focus on the
actual memory objects summarized by MOS. Therefore, the
bug detection can analyze unpaired uses of MM functions and
thus find more bugs.

A significant requirement for our MOS-enhanced bug de-
tection is, however, to first identify all MM functions, as these
functions are the basis of MOS. To address such requirement
despite MM functions following various implementation styles
in different kinds of source code projects, we design an
accurate and yet very efficient identification technique by
combining natural language processing (NLP) and data flow
analysis. Our identification technique is organized according
to two main steps. The first step uses an NLP-assisted classifi-
cation against function prototypes in source code to categorize
functions as MM-relevant or MM-irrelevant. Our insight here
is that a function prototype is often human readable, and the
natural language semantics of the prototype usually reflects
the functionality. By using this semantic information, we
have been able to approximately classify MM functions in

a short time even out of millions of functions. The second
step applies a data flow analysis against the implementation
of each MM-relevant function identified by the first step.
The data flow analysis checks whether the function does
indeed perform memory allocation/deallocation using known
memory allocators/deallocators (which are previously defined
by us manually). The combination of those two steps achieves
both efficiency and accuracy. Efficiency is achieved because
the NLP analysis prunes irrelevant functions (i.e., functions
not related to MM), for which a detailed analysis is thus
not required. Accuracy is achieved because the MM-relevant
functions are analyzed in details by using a static analysis.

Based on our design, we develop a MOS-enhanced memory
bug detection system, GOSHAWK, that annotates the source
code with MOS and conducts bug detection by leveraging
MOS. We have implemented a prototype of GOSHAWK based
on the Clang Static Analyzer (CSA) [8], and applied it to well-
tested open source projects including two OS Kernels (Linux
and FreeBSD), two user programs (OpenSSL and Redis), and
three IoT SDKs (provided by Microsoft and Tencent). The
experimental results show that our approach is able to identify
MM functions in projects of different styles, and the generated
MOS information helps GOSHAWK find 92 new use-after-free
and double-free bugs in less than 10 hours. Moreover, the
use of MOS provides developer-friendly bug detection results.
Compared to traditional bug reports that typically describe
MM bugs with a very complex data flow, a bug report with
MOS is much more concise since the used MM functions in
data flow are simplified. Developers can hence more easily
confirm the reported bugs. We have reported the discovered
bugs to developers using our MOS description, and helped
them to quickly confirm the root causes of detected bugs.

Contributions:

• A novel abstraction structure to summarize MM
functions in data flow analysis. We introduce the MOS
concept to summarize MM behaviors and enable an
object-centric and structure-aware memory bug detection
approach. The use of MOS enhances standard data flow
analysis by abstracting used MM functions but still pre-
serving their detailed behaviors, and it helps eliminate the
paired-use model adopted in existing detection tools.

• A new approach to identify MM functions. We com-
bine NLP and data flow analysis to comprehensively iden-
tify MM functions in source code. Both the analysis speed
and the number of accurately identified MM functions
outperform the results of the state of the art tools by an
order of magnitude.

• GOSHAWK, a MOS-enhanced tool able to detect non-
trivial memory bugs. With GOSHAWK, we discovered
92 new memory corruption bugs in OS kernels, server
applications and libraries, and IoT SDKs. We have made
available the source code of GOSHAWK and details of our
detection results at https://goshawk.code-analysis.org.

https://goshawk.code-analysis.org


1 /*File: Linux/drivers/video/fbdev/hyperv_fb.c*/
2 static int hvfb_probe(struct hv_device *hdev,
3   const struct hv_vmbus_device_id *dev_id)
4 {
5 struct fb_info *info;
6 struct hvfb_par *par;
7 int ret;

8      ...   
9        /*ALLOCATE OBJECT info*/
10   ❶ info = framebuffer_alloc(sizeof(struct hvfb_par), 
11                                       &hdev->device);
12     if (!info)
13        return -ENOMEM;
14     ...
15      ret = hvfb_getmem(hdev, info);
16

17 if (ret) {
18 pr_err("No memory for framebuffer\n");
19 goto error2;
20 }
21      ...
22 error2:
23     ...
24     /*DEALLOCATE OBJECT info*/
25   ❷ framebuffer_release(info);

26      ... //info->apertures double free!
27 return ret;
28 }

29 struct fb_info *framebuffer_alloc(size_t size, ...)
30 {
31      struct fb_info *info;
32      char *p;
33      ...

34      p = kzalloc(fb_info_size + size, GFP_KERNEL);
35 info = (struct fb_info *) p;
36      ...

37 return info;
38 }

39 static int hvfb_getmem(struct hv_device *hdev, ...)
40 {
41      ...               
42   ❸ info->apertures = alloc_apertures(1);
43      ...              //info->apertures allocation
44      pdev = pci_get_device(...);
45      if (!pdev) {
46        ❹ kfree(info->apertures);//info->apertures free
47           return -ENODEV;
48 }
49 }
 

50 void framebuffer_release(struct fb_info *info)
51 {
52      if (!info) return;
53   ❺ kfree(info->apertures);
54      kfree(info);
55 }

Fig. 1. A double-free bug caused by improper use of MM functions. It would be missed by existing detection because it follows the paired-use model. An
effective detection should be aware of the object structure and MM functions.

II. PROBLEM AND SOLUTION

In this paper, we focus on detecting memory corruption
issues related to the use of different MM functions. An MM
function is either a memory allocator or a memory deallocator.
In real-world projects, MM functions are implemented in
a highly diverse way. In general, an MM function can be
classified as either a primitive one or an extended one. A
primitive MM function only handles a single object, while an
extended MM function allocates/deallocates nested or multiple
objects. For instance, the standard libc functions malloc and
free are primitive MM functions, whereas an extended MM
function is one that repeatedly invokes malloc to allocate
multiple memory objects in one execution.

Both primitive and extended MM functions can be improp-
erly used and lead to memory corruption. It is important to
note that memory bugs caused by extended MM functions
are often more difficult to detect than bugs resulting from the
improper use of primitive MM functions. In what follows, we
first introduce a real-world example of a custom MM code
resulting in a bug and discuss the challenges in implementing
a precise detection. We then introduce our solution.

A. Motivating Example

The example in Figure 1 demonstrates the complexity of
using MM functions in Linux kernel. At a glance, a dy-
namic memory object info of struct fb_info type is al-
located by a framebuffer_alloc function (❶), and is re-
leased using the corresponding framebuffer_release func-
tion (❷). However, the info object contains an apertures
sub-object, which also involves a dynamic memory al-

location by invoking the alloc_apertures function (❸).
In this case, the two allocators (framebuffer_alloc and
alloc_apertures) are primitive MM functions, but the deallo-
cator (framebuffer_release) is an extended MM function. It
indicates that the pairwise use of framebuffer_alloc (as the
allocator) and framebuffer_release (as the deallocator) is not
proper. Actually, due to a previous memory deallocation in the
error handling of hvfb_getmem (❹), the memory deallocation
using framebuffer_release suffers from a double-free bug
when the pointer of apertures is freed twice (❺).

We have observed many cases where such a problem leads
to critical memory bugs. Such bugs are often “stealthy”
because the code pattern is seemingly “correct” — developers
tried hard to properly pair allocation and deallocation for mem-
ory objects with MM functions; unfortunately, the standard
models (i.e., assuming that they handle a single memory object
at a time, and follow the paired uses) in these cases are no
longer applicable.

B. Challenges

The core challenge in detecting memory issues
caused by MM functions, like framebuffer_alloc,
framebuffer_release, and alloc_apertures, is how to
implement an MM function aware data flow analysis to drive
the bug detection. That is, we need to identify all used MM
functions, properly abstract their MM behaviors in data flow,
but still keep the precision of the other parts of the data
flow analysis. We observe that most existing memory bug
detection tools fail to implement such an analysis due to the
following reasons:



Cannot comprehensively identify MM functions in differ-
ent source code projects. When detecting memory bugs with
a data flow analysis, only considering a small set of standard
MM functions (e.g., malloc and free) as the sources and
sinks of memory objects would lead to flow explosion if the
analyzed project is very complex. It is essential to identify as
many MM functions as possible (especially those extended
ones) to simplify the data flow and thus accelerate bug
detection. By conducting simple static analysis, which starts
from tracking the data flow of the memory objects dynamically
managed by standard MM functions, it is inherently difficult to
determine when to stop. To find the interface of an MM func-
tion effectively, existing approaches consider information such
as the function name, signature, and description. They either
adopt a heuristic rule based identification (e.g., MemBrush [9],
K-MELD [6]) or utilize NLP (e.g., NLP-EYE[3]) to extract
features directly from the source code. These approaches rely
only on interface information to identify MM functions. Such
information is not sufficient for dealing with implementation
diversity. Hence, an additional validation is also required.
Cannot precisely describe the behaviors of MM functions.
A particular limitation of existing analyses is that they seldom
consider behavior diversity and specificity of MM functions.
Developers might adopt different types of designs to handle
specific structure of memory objects. It is thus necessary to
precisely describe the multi-objects, structure-related behav-
iors of MM functions, especially those extended ones. Un-
fortunately, we found that many function summary based bug
detection tools (e.g., K-MELD, PairMiner [10], PF-Miner [11])
often adopt a coarse-grained detection model and cannot well
summarize the MM behaviors. Hence, they fail to establish
accurate data flows and are unable to find relevant memory
bugs.
Cannot execute effective bug detection with limited code
coverage. To detect memory bugs in large projects, a cross-
module, inter-procedural analysis is necessary to handle very
complex control and data flows. Within a reasonable analysis
time and specific hardware resources, a bug detection cannot
simultaneously pursue in-depth code exploration and analysis
precision. Since an imprecise analysis would easily render the
bug detection results useless due to the overwhelming false
positives (e.g., PeX [12] and LRSan [13] that sacrifice data
flow analysis can only find dozens of real bugs from thousands
of reports), a developer-friendly bug detection tends to restrict
the scope of code exploration to obtain a low false positive
result. However, the loss of code coverage would hamper the
detection of stealthy bugs involving a long execution path.

C. Our Solution

To hunt memory corruption bugs caused by custom MM
behaviors effectively, we propose the following techniques.
First, we observed that MM functions can be distinguished
from the non-MM functions by only considering function pro-
totypes. Specifically, we execute an NLP-assisted classification
to label most MM function candidates efficiently, while some
non-MM functions may be mislabeled. Then we determine

whether a candidate performs memory allocation/deallocation
by applying a top-down data flow analysis from each MM
function candidate to check its internal implementation.

1 /*File: Linux/mm/dmapool.c*/
2 static struct dma_page *pool_alloc_page(struct 
3                       dma_pool *pool, gfp_t mem_flags)
4 {
5 struct dma_page *page;
6                //primitive function
7 page = kmalloc(sizeof(*page), mem_flags);
8 if (!page)
9 return NULL;
10                          //primitive function
11 page->vaddr = dma_alloc_coherent(pool->dev,   
12              pool->allocation,&page->dma, mem_flags);
13      ...
14 return page;
15 }

MOS Representation:
{     Function name        Property
      pool_alloc_page    : Allocator,
      Memory object list   Object type
      RetVal             : struct dma_page*,
      RetVal->vaddr      : void*

}

Fig. 2. An example of using MOS to abstract memory management behaviors.

Second, we propose the Memory Operation Synopsis
(MOS), a structure-aware and object-centric abstract represen-
tation of memory management behaviors and related memory
objects, to help model memory allocation/deallocation of
custom MM functions.

Definition 1. A Memory Operation Synopsis (MOS) is defined
as a MM behaviors summary that consists of primary function
name, primary property, and a list of correlated memory
objects that are dynamically managed. It is represented as
M = {Mname,Mtype, [O]}, where Mname is the primary
function name indicating the summary ancestor; Mtype is the
primary property indicating whether the ancestor is a memory
allocator or deallocator; [O] is a list of memory objects
managed by the ancestor. In the list [O] = [o1, o2, ..., on],
each memory object, i.e., oi = (name, type), is a 2-tuple
where name is a field-based variable name of current memory
object to reveal its structure nested relationship, and type is
its pointer type.

Figure 2 shows an example of how to model memory
management behaviors with MOS. In this example, function
pool_alloc_page first allocates a dma_page buffer using func-
tion kmalloc. Then, it invokes function dma_alloc_coherent
to allocate a vaddr object as a member of the dma_page object.
Finally, the allocated object is returned through the return
value of the function. To summarize the memory management
behavior of pool_alloc_page, the MOS representation first
labels its name and its property as an allocator, then it stores
a list to record the allocated memory objects and how they are
returned (i.e., via RetVal and RetVal->vaddr).

Third, we utilize MOS to enhance data flow analysis based
memory bug detection. By introducing MOS into the standard
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static analysis, the data flow of an MM function can be sim-
plified by only retaining necessary details of all dynamically
managed objects with compound structures. In comparison,
many function summary based bug detection techniques as-
sume that a MM function only handles one simple memory
object, and cannot describe complex memory management
cases. In addition, even if memory bug analysis tools report a
potential problem, they need to output the data flow related to
the improperly used memory object for developers to confirm
the bug and its root cause. By utilizing MOS, we can cut
the MM function part of a too-long-to-understand data flow,
making it easier to understand.

In the following sections, we detail the design and imple-
mentation of GOSHAWK, our proposed MOS-enhanced bug
detection tool, and show its effectiveness in finding non-trivial
memory corruption bugs in various open-source projects.

III. GOSHAWK: A MOS-ENHANCED MEMORY BUG
DETECTION SYSTEM

A. Overview

GOSHAWK, our detection system for memory corruption
bugs in C source code, utilizes MOS to model memory opera-
tions of MM functions and the relevant dynamically allocated
memory objects in a structure-aware way. It executes a three-
phase workflow for memory bug detection (see Figure 3). In
the MM function identification phase, GOSHAWK analyzes
source code and pinpoints MM functions automatically. Then,
through the MOS generation phase, GOSHAWK abstractly
characterizes each identified MM function into a MOS repre-
sentation. In the final phase of MOS-enhanced bug detection,
GOSHAWK fulfils a MOS simplified memory object data flow
tracking through the analyzed target and detects memory bugs
correspondingly.

GOSHAWK combines an NLP-assisted classification and
a data flow analysis based validation to identify MM
functions. We observe that developers often declare the in-
terface of a function to reflect its internal behavior, and we
could classify functions according to the natural language
semantics of their interfaces. Therefore, GOSHAWK utilizes
NLP to extract specific features from function prototypes
declared in source code, and computes the feature similarity
for each function against a reference set, which consists of
pre-collected prototypes of representative MM functions. This
efficiently classifies MM functions and non-MM functions by

only checking their prototypes. And even if the classification
sometimes over-labels non-MM functions as candidates, it
seldom mistakenly labels a MM function. Hence GOSHAWK
can exclude a large portion of irrelevant functions via the
classification. Next, GOSHAWK conducts a top-down data flow
analysis starting from the interface of each candidate, checking
whether the function uses any official MM functions (how we
maintain a set of such allocators/deallocators is detailed in
Section IV-B). And if the data flow analysis validates that the
candidate does execute MM behavior, GOSHAWK identifies it
as a MM function with a high accuracy.

To further summarize a MM function with a structure-
aware granularity, GOSHAWK utilizes the MOS represen-
tation to abstract how memory objects are dynamically
allocated/deallocated. Since for each MM function, the pre-
viously applied data flow analysis has tracked and labeled the
dynamic memory status of all the relevant memory objects
and analyzed the memory operations (e.g., allocating/releasing
memory, returning a pointer through return value/parameters).
GOSHAWK directly leverages this data flow information to
translate implementation details into MOS.

With the help of MOS, GOSHAWK implements a
structure-aware, object-centric memory bug detection.
GOSHAWK leverages MOS information to update memory
object status. When traversing again the source code to detect
bugs, GOSHAWK skips the redundant data flow analysis when
encountering an MM function; it instead reads information
provided by MOS to understand the detailed MM behaviors,
and directly updates the status of memory objects accordingly.
MOS helps simplify the entire data flow by summarizing
a MM function as a node, but still preserves the structure
information of the memory objects. Since every memory
object can be precisely described and tracked, more bugs are
expected to be found. The simplified data flow also retrofits
the bug report: the reported issues can be examined without
inspecting the data flow inside the MM functions.

B. MM Function Identification

NLP-assisted classification. The NLP-assisted classification
starts from parsing the source code of the tested project to
extract all function prototypes, and chooses the prototype
with at least one pointer (either a return value or a func-
tion parameter). The extracted prototypes are then sent to a
ULM-based segmentation [14] process and each is divided



into a list of subwords (GOSHAWK utilizes Byte Pair En-
code [15] algorithm to collect meaningful subwords and their
occurrence frequency from the posts of StackOverflow [16]).
Then, GOSHAWK converts the subword list into a numeric
vector by utilizing a Siamese network [17] with Transformer
encoders [18] trained with manually labeled MM and non-
MM functions. Finally, GOSHAWK computes a similarity score
between the numeric vector of a function and three reference
vectors, which separately indicate memory allocation function,
memory deallocation function, and non-MM function type.
According to the similarity score, GOSHAWK classifies the
tested functions as one of the above types. More details of
model training are provided in Section A in Appendix.

The essential aspect of our proposed similarity comparison
is how to build the three reference vectors. We first randomly
collect 5,342 function prototypes as a function prototype cor-
pus from real-world projects (e.g., Linux kernel) and manually
classify them into three types. Next, we apply the same ULM-
based segmentation to the classified functions to obtain three
sets of subword lists. Using these sets as the training data, we
drive a Siamese network to generate optimized Transformer
encoders. After the training, we not only obtain a specific
Siamese network with trained encoders, but also use this
network to convert subword lists of our function prototype
corpus into vector lists of three types. Finally, for vectors of
each of the three types, we calculate the arithmetic mean and
finally obtain three reference vectors.
Data Flow Analysis based Validation. Identifying MM func-
tions only through an NLP-assisted classification is obviously
inaccurate, and thus GOSHAWK double-checks the results by
conducting a top-down data flow analysis against each MM
function candidate to check whether the candidate or any of
its sub-routine uses an official MM function. Official MM
functions are those MM APIs (e.g., malloc, kzalloc, free)
standardized by widely used libraries (e.g., libc) or systems
(e.g., OS kernel). We collect such official MM functions
from the official documents of operating systems [19] and
libraries [20]. In detail, the validation traverses the code of
a candidate and its sub-routines, finding whether there exist
invocations of official MM functions. Once a specific invoca-
tion is found, GOSHAWK builds the data flow related to the
official MM function inside the candidate, examines whether
an allocated/deallocated memory object is connected to the
parameter/return value of the candidate. If so, GOSHAWK
identifies the candidate as a MM function with a high accuracy.

C. MOS Generation

GOSHAWK utilizes MOS to summarize all alloca-
tion/deallocation operations inside an MM function. To gen-
erate MOS for an MM function, GOSHAWK reuses the re-
cursive data flow analysis of MM function validation to
track the propagation of allocated/deallocated memory objects
(pointers) from official MM functions. If the involved official
MM functions are allocators, GOSHAWK adopts a forward
data flow analysis to track whether the pointers of those
allocated objects are copied to either a return value or any

parameters of the function interface. Otherwise, it tracks data
flow backwards to label the released parameters. Note that
the adopted data-flow analysis is field-sensitive, and thus it
maintains the nested relations of struct elements. Once all
data flow and structure information of the involved memory
objects is collected, GOSHAWK follows the MOS definition
to generate the associated MOS for its MM function. In
particular, if an MM function contains other MM functions
with MOS already generated, GOSHAWK merges the MOS
information of those sub-routines to that of the outermost
MM function. For those official MM functions, GOSHAWK
considers them as domain knowledge and prepares the MOS
for them before any analysis.

1 static void tpci200_uninstall(struct tpci200_board 
2                                              *tpci200)
3 {
4 tpci200_unregister(tpci200);
5 kfree(tpci200->slots);
6 }
7 
8 static void tpci200_unregister(struct tpci200_board 
9                                              *tpci200)
10 {
11 pci_iounmap(tpci200->info->pdev, 
12                tpci200->info->interface_regs);
13 pci_iounmap(tpci200->info->pdev, 
14                      tpci200->info->cfg_regs);
15     ...
16 }
17

18 void pci_iounmap(struct pci_dev *dev, void *addr)
19 {
20     ...
21 iounmap(addr);
22 }

❶

❷

❸

❹

❺

MOS Representation:
{

tpci200_uninstall: Deallocator,
tpci200->info->interface_regs: void *,
tpci200->info->cfg_regs      : void *,
tpci200->slots               : struct tpci200_slot *

}

Fig. 4. An example of data flow based MOS generation.

Figure 4 shows a concrete example of MOS generation.
In this case, GOSHAWK first identifies three deallocators,
tpci200_uninstall, tpci200_unregister, and pci_iounmap.
When GOSHAWK analyzes the outermost tpci200_uninstall
function, it tracks the internal pci_iounmap function
and further finds an official deallocator iounmap.
GOSHAWK then generates the MOS for pci_iounmap,
and since tpci200_unregister invokes pci_iounmap,
GOSHAWK merges the MOS of pci_iounmap into
that of tpci200_unregister. That is, the MOS of
tpci200_unregister contains the (two objects) deallocation
behaviors of pci_iounmap. Finally, GOSHAWK summarizes
the MOS of tpci200_uninstall by combining the MOS
of tpci200_unregister and that of the standard memory
deallocation function kfree. As a result, when a program
analysis traverses the code, it only needs to use the MOS
of the outermost function tpci200_uninstall to precisely
describe the three to-be-released sub-objects of the tpci



parameter without exploring the internal MM functions.
During our MOS generation stage, we do not con-

sider the path constraints of conditional memory alloca-
tion/deallocation. Integrating such description into MOS is
not difficult; it however significantly complicates the MOS
definition. Our design choice is to consider the MM behaviors
as unconditional in MOS (i.e., by executing a flow-insensitive
analysis at this stage), and leave the task of checking con-
straints related with function invoking, global variables status,
or logical arithmetic after the bug detection. That is, when
a potential bug is reported, GOSHAWK then applies a fine-
grained symbolic execution (e.g., by using the Z3 solver [21])
to only re-analyze the involved code paths of the reported
issue. This can filter out the possible false positives caused
by the conditional memory allocation/deallocation without
incurring heavy performance overhead beforehand.

D. MOS-enhanced Bug Detection

When GOSHAWK traverses the source code to detect mem-
ory bugs, it achieves an efficient yet precise bug detection with
the help of MOS. It modifies the way of how dynamically
managed memory objects are modelled to reduce the scope of
code exploration, and then detects complex memory corruption
bugs in an object-centric and structure-aware way.

Traditionally, a memory corruption bug detection starts
from recording memory object allocations of a few standard
allocators (e.g., malloc), tracking the data flow of allocated
objects until they are released by deallocators (e.g., free),
and examining whether the released objects are used or
released again. However, this strategy often needs to explore
a long code path with very complex data flow involved, and
easily leads to analysis state explosion. GOSHAWK, instead,
explores memory objects propagation between custom alloca-
tors/deallocators and does not need to explore the internal code
of MM functions, and thus avoids path explosion effectively.

In particular, when encountering a MM function, GOSHAWK
first retrieves the function type from MOS. If the function
is an allocator, GOSHAWK reads the dynamically managed
memory objects list, and creates new symbols for all allocated
objects accordingly; if the function is a deallocator, GOSHAWK
updates the status of involved memory objects by labeling
their symbols as “released”. Consider the code in Figure 1 as
an example. After the MM function identification and MOS
generation, GOSHAWK creates MOS for framebuffer_alloc
(❶) and alloc_apertures (❸). When the bug detection en-
counters these two MM functions, the MOS information helps
GOSHAWK directly model the allocated memory objects (and
avoids a redundant analysis against the MM functions). And
when the bug detection moves forward to the deallocation
function framebuffer_release (❷), GOSHAWK also reads its
corresponding MOS and then updates the statuses of the
allocated objects. In this case, GOSHAWK only needs to
explore code paths between ❶ and ❷ to find the bug.

More importantly, MOS provides rich information to help
GOSHAWK precisely model the memory management behav-
iors of multiple memory objects nested in structures. In the

case in Figure 1, the MOS-based memory object modeling
helps GOSHAWK understand the structure of object pointed by
the info pointer. Therefore, GOSHAWK is able to accurately
update the status changing of a compound struct: when the
bug detection moves from ❶ to ❷, GOSHAWK not only
knows the allocation/deallocation against the info pointer,
but also that against the info->apertures pointer, and thus
captures the double-free bug (❹ + ❺). In comparison, other
approaches (e.g., the pair-based mining approaches assume
that each memory allocator creates a single memory object,
and there is a corresponding deallocator to release it) often
fail to precisely track such compound objects even if they
also generate summaries for custom MM functions.

IV. IMPLEMENTATION

The implemented GOSHAWK prototype consists of over
3.5K lines of C++ code and 4K lines of Python code. The
source code is available at https://goshawk.code-analysis.org.
We elaborate on implementation details below.

A. MOS-enhanced Bug Detection on CSA

The GOSHAWK prototype is built on top of the CSA
code analysis engine. The original version of CSA detects
memory corruption bugs by using path-sensitive and inter-
procedural symbolic execution. To integrate MOS with CSA,
we implement a MOS interface for CSA to interpret the MOS
and model the related memory objects. We also design a use-
after-free and double-free checker by reusing the detection
logic of MallocChecker [22], which is the official memory
corruption bug checker of CSA. Then, we use Z3 SMT solver
to eliminate some false warnings due to infeasible paths.
MOS Interface Implementation. To implement the MOS
interface, we overwrite the callback evalCall of CSA. The
callback evalCall is used to model each invoked function. By
overwriting the callback evalCall, the MOS interface skips
analyzing the MM function implementation, and models the
function memory management behaviors on the CSA engine
according to the MOS information. In detail, when evalcall
is invoked, the interface checks whether the callee function
has a MOS attached to it. If no MOS is found, the interface
returns back to CSA default analysis, steps into the callee
function body and continues its inter-procedural analysis.
Otherwise, the interface models the relevant memory objects
in three steps: (1) The interface parses the MOS to obtain the
detailed MM behavior information of the function and a list
of dynamically managed memory objects. (2) By retrieving
each memory object from the list, the interface utilizes the
CSA engine to explore the corresponding symbolic expression
that represents the memory object. If the memory object is
a member nested in a structure, the interface traverses the
structure definition and pinpoints the expression where the
memory object is declared. (3) The interface separately creates
a new symbol for the expression with allocator, retrieves the
symbol of the deallocator expression, and updates its status to
“released” for the expression with deallocator.

https://goshawk.code-analysis.org


Checker Design. We implement a MOS-enhanced checker to
detect use-after-free and double-free bug checker during the
analysis phase of CSA. It starts a path-sensitive and inter-
procedural analysis on each translation unit and selects the
first node of a call graph as the entry point. It then analyzes
each encountered callee function until all the call graphs of
the current translation unit have been checked. When CSA
encounters a callee function, the checker invokes the callback
evalCall to see whether the callee function has an attached
MOS; if this is the case, it interprets the MOS and creates or
updates relevant symbols. If a symbol with “released” status is
being updated to “released” status again, the checker reports
a double-free violation. The checker also monitors all de-
reference operations, and reports a use-after-free violation if a
symbol with “released” status is being de-referenced.
Infeasible Paths Elimination. CSA uses a range based
constraint solver [23], which maps constraint conditions to
symbolic binary comparison expressions without performing
logical or arithmetic calculations between unknown symbol
values. Thus it has high performance but introduces false
positives due to the imprecise constraint solving. Also, the
conditional allocation/deallocation inside MM functions may
introduce some false positives. To eliminate those false warn-
ings, GOSHAWK leverages CodeChecker [24], a static analysis
framework built on the LLVM/CSA toolchain and currently
integrated with the Z3 SMT solver, to cross check the feasi-
bility of each reported issue path. To be more specific, with the
violations reported by the default range based constraint solver,
GOSHAWK utilizes CodeChecker to collect the entire violation
paths (from an official allocator to the violation point) and re-
check the feasibility of those paths by using the Z3 solver.
Code Exploration Settings. To implement a cross-module
inter-procedural analysis, CSA inlines invoked functions from
different source files code with a Cross Translation Unit
(CTU) [25] analysis. Intuitively, to obtain a complete code
coverage, the analysis should explore as many functions/files
as possible. This is, however, infeasible in most cases since it
would inevitably encounter scalability issues [26]. To prevent a
specific analysis from consuming too much time and hardware
resources, CSA supports customized breadth and depth of its
code exploration. In particular, the following analysis param-
eters are directly related to the bug detection of GOSHAWK:
1) Maximum analysis depth (MAX-AD): starting from an entry

point function, the maximum number of explored (inlined)
functions during an inter-procedural analysis;

2) Maximum analysis breadth (MAX-AB): starting from an
entry point function, the maximum steps of execution on
the symbolic state graph during a symbolic execution based
path traversing.

3) CTU import threshold (CTU-THR): when analyzing a
translation unit (i.e., a source file) the maximum number
of external translation units to import.

B. MM Function Validation

As it is time consuming and inaccurate to conduct code
analysis targeting an entire project, GOSHAWK only analyzes

the sub-routines of the MM function candidates. Before that,
we collected a list of generally and widely used MM functions
from the official documents of the operating system kernel and
libc. In total, 32 functions are added to the official MM func-
tion set (details are listed in the Appendix). Then GOSHAWK
executes three steps to validate MM function candidates:

1) Starting from the program codes, GOSHAWK leverages the
Clang [27] compiler and plugins to construct the whole
program call graph and generate control flow graphs for
each function.

2) Given a MM function candidate, GOSHAWK first records
the call-chains to each official MM function invocation
on the whole program call graph, and then records the
corresponding paths on control flow graphs.

3) With the recorded call-chains and paths, GOSHAWK con-
ducts backward program analysis to propagate the data
flows of official MM functions by up-walking the call-
chains and paths. Specifically, the data flow propagation is
achieved by checking the variables involved in statements
of BinaryOperator and VarDecl in Clang plugins, which
assign values to variables. If there exists a data flow passed
from outside of the MM function candidate, GOSHAWK
regards this function as a valid MM function.

To avoid scalability issues (e.g., numerous call-chains and
paths are recorded when starting from main function) and
precision issues (i.e, indirect call target resolution and pointer
address calculation on data flow propagation), we adopt a
conservative policy: (1) Do not resolve indirect call target
when constructing the whole program call graph. (2) Only
record the MM-relative call-chains, such as MM candidate->
MM candidate -> official MM function. (3) Do not propagate
the data flows involved in pointer address calculations.

C. Ambiguous MM Behaviors Modeling

For re-allocators which perform different memory allocation
and deallocation behaviors based on the concrete values of
their parameters at runtime, GOSHAWK simply considers them
as common allocators, since in MOS we do not distinguish a
re-allocator from an allocator. For functions that fetch or save
memory objects in a global link list, GOSHAWK currently does
not consider them as MM functions, although technically it is
feasible to track their data flows.

V. EVALUATION

We assessed GOSHAWK by mainly considering its effec-
tiveness in identifying MM functions and detecting memory
corruption bugs (in particular, use-after-free and double-free
bugs). The following research questions were answered:

• RQ1: Can GOSHAWK identify MM functions precisely and
extensively for different kinds of source code projects?

• RQ2: Is MOS-based detection able to find memory bugs
more effectively?

• RQ3: How does MOS help accelerate the data flow analysis
and the bug detection?



TABLE I
RESULTS OF CUSTOMIZED MEMORY MANAGEMENT FUNCTION IDENTIFICATION AND MEMORY BUG DETECTION IN POPULAR OPEN-SOURCE PROJECTS

Program Version Lines of
Code

Number of
Functions

Identified Allocators Identified Deallocators Detected Bugs
Primitive Extended Primitive Extended UAF DF Confirmed

Linux 5.12-rc2 20.1M 549K 2,916 1,805 1,812 4,266 32 17 40
FreeBSD 13.0.0 5.9M 99K 482 273 393 853 9 9 17
OpenSSL 3.0.0 456K 19K 93 15 134 193 1 8 9

Redis 6.2.1 149K 3K 51 9 28 41 1 0 1
Azure 2021_Ref01 661K 4.8K 126 7 58 177 0 4 1

QcloudE 3.1.8 86K 759 21 1 26 21 2 5 7
QcloudH 3.2.3 79K 638 20 1 25 21 2 2 4

Total - - - 3,709 2,111 2,476 5,572 47 45 79

QcloudE refers to Qcloud IoT Explorer Device SDK and QcloudH refers to Qcloud IoT Hub Device SDK.
UAF: use-after-free bug; DF: double-free bug

Environment. The evaluations were conducted on a server
running Ubuntu 20.04 with an AMD Ryzen Threadripper
3990X, 192 GB RAM, and a GeForce GTX2080-Ti GPU card.

A. Overall Results

We applied GOSHAWK to seven well-known open source
projects of different code scales. Table I summarizes the
tested projects, and the identification and detection results for
each tested project. GOSHAWK successfully analyzed all their
source code and completed the use-after-free and double-free
bug detection in less than one day (details of analysis costs are
reported in Section V-F). In total, GOSHAWK identified more
than 10,000 MM functions, and detected 92 (47 use-after-
free, 45 double-free) bugs. All the found bugs have been
reported to the corresponding communities1. In the following,
we detail the results of our evaluation. We also provide the
raw analysis and detection results as supplementary materials
at https://goshawk.code-analysis.org.

B. Comparison with MallocChecker

To evaluate how identified MM functions and MOS enhance
current bug detection tools, we select the official memory
corruption bug checker of CSA, MallocChecker, and repeat our
bug detection experiments. MallocChecker does not consider
non-standard MM functions and straightforwardly tracks mem-
ory objects between standard MM functions (malloc, free,
kmalloc and kfree). We first applied MallocChecker to the
seven projects under the same code exploration settings (i.e.,
covering the same code range), and reviewed how many bugs
detected by GOSHAWK were also detected by it. As Table II
shows, MallocChecker only found 21 of the 92 bugs, and it did
not find any new bug that GOSHAWK could not find. For small
projects (OpenSSL, Redis and IoT SDKs) where the analysis
scope is less limited ((i.e., could cover more code paths),
MallocChecker still misses 14 out 25 bugs. For the larger
projects (Linux and FreeBSD kernels) where MallocChecker
could only explore a limited range of code, it detected only 7
out of 67 (16.4%) bugs.

1Before our submission (December 2021), 79 out of 92 bugs have been
confirmed and the rest 13 bugs are under review.

TABLE II
COMPARISON WITH MALLOCCHECKER IN TERMS OF DETECTION

EFFECTIVENESS AND EFFICIENCY (IN MINUTES)

Goshawk MalChk-S MalChk-E
Bugs Time Bugs Time Bugs Time

Linux 49 328.91 2 367.72 - -
FreeBSD 18 20.84 5 19.73 6 664.76
OpenSSL 9 3.51 1 3.66 1 79.13
Redis 1 1.03 0 0.78 0 24.01
Azure 4 0.22 2 0.26 2 6.41
QcloudE 7 0.10 4 0.11 7 1.77
QcloudH 4 0.07 4 0.08 4 8.66

Presicion 63.4% 20.6% 35.7%

MalChk-S : MallocChecker with AMD 3990x, 192G RAM.
MalChk-E : MallocChecker with Xeon 4126, 1T RAM.

Intuitively, it is the limitation of code exploration that
hinders MallocChecker from discovering more bugs. To check
whether the used hardware (and the corresponding code ex-
ploration scope) limits the effectiveness of MallocChecker, we
repeated the experiments with a more powerful server (two
Intel Xeon 4216 processors, 64 cores, 1TB RAM), which
allowed the code exploration scope to extend from MAX-
AD=5, MAX-AB=225,000, CTU-THR=100 to MAX-AD=10,
MAX-AB=2,250,000, CTU-THR=20,000. As shown in Table II,
the analysis time increased significantly, but MallocChecker
only found four more bugs. More in detail, when analyzing
the Linux kernel, MallocChecker cannot scale at all; even for a
single source file, it consumed more than 15GB RAM and took
four hours to finish the analysis. This is certainly infeasible for
Linux kernel with more than 20,000 source files. In compari-
son, by covering the same (or less) amount of code, GOSHAWK
could detect bugs since it does not need to explore code
paths in MM functions and avoids the path explosion issue.
For instance, a bug related to the l2cap_sock_alloc_skb_cb2

custom allocator involves an 11-layer call chain to the final
allocation. In this case only the MOS-enhanced bug detection
could effectively handle it.

2This function is declared in linux/net/buletooth/l2cap_sock.c

https://goshawk.code-analysis.org


Another interesting observation is that even though
MallocChecker adopts a simpler bug detection model, it
consumes more time than GOSHAWK when analyzing the
Linux kernel (367.72 vs 328.91 minutes) with the same code
exploration scope. This is because GOSHAWK avoids to redun-
dantly analyze those 13,868 MM functions. To quantitatively
measure how much analysis costs were saved, we checked all
intermediate analysis records and found that by using MOS,
GOSHAWK avoids 9,779,077 times of function analysis and
does not need to repeatedly explore 253,324,662 paths.

C. Effectiveness of MM Function Identification

GOSHAWK analyzed more than 27.3 million lines of code
for all tested projects, and extracted more than 676,000
function declarations. Then it conducted the NLP-assisted
classification. Given the trained Siamese network and the
corresponding reference vectors, 90,069 functions were first
classified. By further considering whether the prototype of
a classified function contains a data pointer, 53,977 MM
function candidates were selected. Obviously, the candidate
set contains many non-MM functions only with a similar
prototype, and would introduce false positive to the subsequent
bug detection. Therefore, GOSHAWK continuously applied
data flow analysis based validation to filter irrelevant functions.

After applying data flow analysis based validation to cross-
check the candidates, GOSHAWK identified 13,868 (5,820
allocators and 8,048 deallocators) custom MM functions out
of 53,977 functions. For projects, OpenSSL, Redis, and
IoT SDKs, we manually verified all the identified results
and confirmed that they were correctly identified. For the
Linux kernel and FreeBSD kernel, although we did not have
ground truth data and were not able to manually verify all
identified functions, we did check 300 functions randomly
and found no misidentified case. We also randomly chose
50 filtered functions to check whether they were reasonably
eliminated. Our manual inspection found that although the
names of those functions were similar to names of alloca-
tion and deallocation functions (e.g., percpu_alloc_setup,
nr_free_buffer_pages), they did not execute any memory
allocation or deallocation.

To systematically evaluate how NLP-assisted classification
and data flow analysis based validation affect the accuracy, we
manually chose 200 allocators, 200 deallocators, and 600 non-
MM functions to test the identification accuracy. As shown in
Table III, GOSHAWK tended to mis-label non-MM functions
when using only NLP-assisted classification (low precision).
When using both NLP-assisted classification and data flow
analysis based validation, the precision increased to 100%
but the recall decreased, which indicates that it would miss
more MM functions. To verify this at a larger scale, we
referred to K-MELD [6] and SinkFinder [5], two recent tools
which also labeled MM functions in Linux kernel. K-MELD and
SinkFinder respectively labeled 1,267 and 438 MM functions
in Linux kernel (version 5.2.13 and 4.19); thus we applied
GOSHAWK to these two versions of Linux kernel and compared
our results to them. GOSHAWK outperformed K-MELD and

TABLE III
EVALUATING ACCURACY OF MM FUNCTION IDENTIFICATION WITH A

GROUND TRUTH DATASET

Allocator Deallocator
Precision Recall Precision Recall

w/o DFA 89.6% 91.0% 90.2% 97.0%
w/ DFA 100% 84.5% 100% 89.5%

SinkFinder in finding more MM functions (Table IV), but
it missed 594/259 functions labeled by K-MELD/SinkFinder.
After manually reviewing all those functions, we found that
446/205 of them did not perform MM behaviors (they were
thus false positives of K-MELD and SinkFinder). We then re-
examined the rest 148/54 functions and found that our NLP-
assisted classification did label 129/46 of them. However,
the subsequent validation failed to return correct data flow
information due to analysis issues such as indirect calls and
sophisticated pointer arithmetic.

Answer to RQ1: GOSHAWK guarantees the soundness of
MM function identification but may miss a small portion of
MM functions due to imperfect NLP and data flow analysis.

TABLE IV
COMPARISON OF MM FUNCTION IDENTIFICATION IN THE LINUX KERNEL

Version K-MELD SinkFinder Goshawk
A D A D A D MN MD

v5.2.13 806 461 - - 4,571 4,847 19 129
v4.19 - - 256 182 4,396 4,704 8 46

A : # of allocators; D : # of deallocators;
MN : # of MM functions missed by NLP-assisted classification;
MD : # of MM functions missed by DFA based validation.

D. Features of generated MOS

GOSHAWK successfully generated MOS for all 13,868
identified custom allocators/deallocators. Based on MOS infor-
mation, we can observe the distribution (primitive vs extended)
of custom MM functions in different projects. Table I lists the
number of each kind of MM functions, and the overall dis-
tributions. We found that there are more custom deallocators
(8,048) than custom allocators (5,820), and each project has
this characteristic. This implies that allocators and deallocators
are not always paired, so is their usage.

In all 5,820 custom allocators, GOSHAWK found that the
number of primitive ones (3,709, 63.7%) is larger than that of
the extended ones (2,111, 36.3%). In comparison, for the 8,048
custom deallocators the number of primitive ones (2,476,
30.7%) is smaller than that of extended ones (5,572, 69.3%).
This distribution shows that developers may be more likely to
allocate memory objects separately, but deallocate them in a
centralized way (refer to the motivating example in Figure 1).

The generated MOS reflected the widely existence of com-
plex memory object managements among the identified MM



functions. For the 5,820 memory allocation functions, 4,311
(74.1%) functions return allocated memory objects via a return
value (548 functions return the allocated memory objects with
at least one sub-object allocated), and 1,509 (25.9%) functions
return the allocated memory objects via parameters. For the
8,048 memory deallocation functions, 2,504 (31.1%) functions
directly release a pointer, and 3,938 (48.9%) functions only
dereference the pointer to obtain the structure information to
release its sub-objects, while 1,608 (20%) first dereference
the pointer and then release both its sub-objects and the main
object its points to. The experimental results demonstrate that
modeling extended MM functions as primitive ones would
lead to a imprecise bug detection. In response, the generated
MOS preserved essential information to model MM functions
and the related memory objects, thus are expected to help the
following bug detection work precisely.

E. Bug Detection

1) Code Exploration Settings: To fully use of our hardware
resources (64-core AMD 3990x and 192GB RAM), we empiri-
cally set the analysis parameters of CSA as MAX-AD=5, MAX-
AB=225,000, and CTU-THR=100 (larger parameters would
exhaust the CPU/RAM and stop the analysis).

2) Detected Bugs: With the help of the generated MOS
information, GOSHAWK conducted use-after-free and double-
free bug detection against recent versions of Linux kernel,
FreeBSD kernel, OpenSSL, Redis and IoT SDKs. GOSHAWK
reported 145 potential bugs. Our manual audit, only taking
three days (8 hours per day) for one developer (who was not
responsible for the buggy code), confirmed that 92 (63.4%) of
the reported issues were real bugs and previously unknown
(a more detailed result is reported in Table VII in Appendix),
even though those projects were tested by many code analyzers
and checked by reviewers. Actually, we inspected these bugs
in the commit history of the tested projects and found that
many of them have been present for a long time. For instance,
in the Linux kernel we found that 12 bugs have been present
for more than 6 years3, and another 3 bugs have even been
present for 15 years4. Although the Linux kernel is periodically
tested by different static tools, we argue that the lack of
MM summarization still makes difficult for developers to
confirm those bugs, and MOS based bug descriptions help
them examine the issues more effectively. Except for few
special cases, our reported bugs received the confirmation of
kernel developers within 2 days on average.

3) Detection Accuracy: The bug detection of GOSHAWK
against the seven tested projects initially labeled 308 issues in
the source code. Among the 308 labeled issues, we first found
163 cases of infeasible path caused by insufficient contextual
information, complex logical calculations or conditional allo-
cation/deallocation. By using the Z3 SMT solver to re-analyze
the issue relevant paths, we excluded 30 false warnings. For
the other 133 cases, we found that even the Z3 solver could not

3ID 5, 11, 13, 15, 27, 32, 35, 36, 37, 38, 39, 48 in Table VII
4ID 41, 44, 45 in Table VII

TABLE V
ANALYSIS TIME FOR MM FUNCTION IDENTIFICATION, MOS

GENERATION, AND BUG DETECTION (IN MINUTES)

MMFI MG BD Total

Linux 61 38 328 427
FreeBSD 11 3 20 34
OpenSSL 2 1 3 6.5
Redis 1.5 3 1 5.5
Azure 1.07 0.61 0.22 1.90
QcloudE 0.28 0.64 0.10 1.02
QcloudH 0.26 0.60 0.07 0.93

MMFI : MM function identification;
MG : MOS generation; BD : Bug detection

practically explore those paths, and we directly excluded the
infeasible path cases manually. After that, we then examined
the false positive and false negative cases.
False positives. For the 145 issues left for a manual bug
verification, we confirmed that GOSHAWK reported 33, 7,
0, 0 and 13 false warnings for Linux kernel, FreeBSD kernel,
OpenSSL, Redis and IoT SDKs, respectively. We found that
the root causes of those false positive cases are mainly due to
the weakness of the memory model [28] of CSA engine; CSA
sometimes incorrectly models two pointer variables (actually
pointing to two different addresses) with the same symbolic
values, thus causing false positives. We leave the enhancement
of alias analysis as a future effort. Considering that GOSHAWK
has analyzed millions of code and introduced more than
10,000 custom MM functions, such a precision is promising.
Also, the number of the reported bugs is manageable for a
manual audit.
False negatives. Since we did not have a ground truth to verify
the false negative rate against the seven tested projects, we
chose another bug list to evaluate GOSHAWK. The bug list
contained 31 use-after-free bugs in Linux kernel 4.19 found
by SinkFinder tool, which also utilized annotation-assisted
detection (we list the details of those bugs in Table VI in
Appendix5). GOSHAWK successfully detected 29 of those
31 bugs; also we found that GOSHAWK could not detect
the left two bugs because it failed to identify the related
deallocators cfg80211_put_bss and nfc_put_device due to
the issues mentioned in Section V-C. Actually, we manually
added cfg80211_put_bss and nfc_put_device into our custom
MM function set and generated MOS for them. This time
GOSHAWK detected the remaining two bugs successfully.

Answer to RQ2: GOSHAWK achieved a 63.4% of precision
for reported bugs, and found new bugs that other annotation-
based detection tools were not able to discover. Moreover,
the MOS based bug description is more concise for analysts
to understand.

F. Time and Performance Analysis

By utilizing MOS to simplify the code exploration,
GOSHAWK avoids scalability issues in bug detection and

5Note that we excluded four reference count related bugs mentioned in
SinkFinder paper since this is out of the scope of this paper.



can efficiently analyze complex projects. Table V shows the
analysis time costs for GOSHAWK to check each of the seven
tested projects. For the most time-consuming bug detection
process against Linux kernel, GOSHAWK spent 427 minutes to
execute the whole analysis. Specifically, it took 61 minutes to
perform NLP-assisted classification and data flow analysis to
identify MM functions from source codes. Then, 38 minutes
were used to generate MOS for the identified MM functions.
With the generated MOS, GOSHAWK took 328 minutes to
detect bugs. In comparison, as we show in Section V-B, if
we did not restrict the exploration scope, the analysis would
have required unacceptable time even with a more powerful
hardware configuration. For other projects, GOSHAWK could
complete the bug detection in less than one hour. These results
show that we can deploy GOSHAWK to implement a daily bug
checking even for large projects such as the Linux kernel.

We further investigated the identified MM functions and
found 988 out of 4,721 allocators contain a long (>5) call chain
from the entry to the primitive allocators. For deallocation
functions, the results were similar. Since GOSHAWK identified
those MM functions and modeled them as MOS, it removed
the internal data flow of all identified MM functions and
thus reduced the length of data flow. On average, GOSHAWK
reduces the data flow length by removing 2.99 functions for
custom allocation and 2.54 functions for custom deallocation.

The use of NLP significantly boosts the entire MM function
identification. Taking the identification against Linux Kernel
as an example, we found that the NLP-assisted classification
takes 22 minutes to classify 549,187 functions, and the subse-
quent data flow analysis based validation only takes 39 minutes
to check all those functions. In fact, we ran a data flow analysis
to check all functions in Linux Kernel without applying the
NLP-assisted classification, and found that the experiment
could not terminate and suffered from out-of-memory crash
on our server with 192G RAM.

Answer to RQ3: By using MOS to facilitate bug detection,
GOSHAWK avoids a large number of redundant explorations
and addresses the path explosion issue. The NLP-assisted
classification also boosts the MM function identification.

G. Comparison with Related Works

MM Function Identification. GOSHAWK significantly out-
performs K-MELD and SinkFinder in terms of the number
of identified MM functions (Table IV). Besides, the identi-
fication result of GOSHAWK is more extensive. K-MELD and
SinkFinder were only applicable to Linux kernel. GOSHAWK is
designed to broadly analyze source code with different scales
and is able to accurately find MM functions in both large and
small projects.
Bug Detection. We further compare GOSHAWK to K-MELD
and SinkFinder in bug detection. Since K-MELD and SinkFinder
were not specifically designed to detect use-after-free and
double-free bugs, we adopted an indirect comparison between
GOSHAWK and them. We applied the similar analysis process
but only utilized the MM functions labeled by K-MELD and

SinkFinder to help detect bugs in Linux kernel. We first added
those MM functions into GOSHAWK but only as primitive
allocators/deallocators (i.e., adopting a simple memory object
model), and examined the results. We found that the MM
function sets of both K-MELD and SinkFinder were inaccurate
and caused false alarm: the number of bugs reported by
separately using MM function sets of K-MELD and SinkFinder
were 4,742 and 999, and GOSHAWK only re-detected 18 and
8 bugs among them. This shows that the bug detection models
of K-MELD and SinkFinder are imprecise. They cannot handle
nested allocation and unpaired uses of MM functions and thus
are expected to incur high false positives and false negatives.
Actually, even though SinkFinder has considered the custom
function issues and annotates several function (pairs), its pair-
based detection (against Linux kernel 4.19) still misses all 14
use-after-free bugs that are detected by GOSHAWK6.

Hence we further applied the same data flow analysis
validation and MOS generation procedures against their MM
function sets to refine the memory model, and only preserved
663/160 MM functions. By utilizing their MOS information,
the new detection results become much better: only 57/23 bugs
are reported and 20/10 of them are valid after manual inspec-
tion. This demonstrates that our structure-aware and object-
centric analysis improves the analysis precision effectively.

VI. DISCUSSION

Scalability Bottlenecks. Our evaluation has demonstrated
that the depth and breadth of code exploration are the main
factors impacting the analysis complexity: to enumerate more
execution paths, the complexity of exploration increases ex-
ponentially, which is the well-known path-explosion problem.
Hence our current analysis applies different thresholds to limit
the range of code exploration to ensure that the analysis time
and required hardware resources are practical (note that the
settings guarantee that at least every function is explored).

We identify two potential strategies to improve the scala-
bility and coverage. The first strategy is to reduce the number
of paths for symbolic execution. Path-based symbolic execu-
tion [29], [30], concolic execution [31], [32], and selective
symbolic execution [33] have shown to be highly scalable to
complex programs. To adopt such a strategy, one can first
apply static analysis or heuristics to select potentially buggy
paths and focus the symbolic execution on only them to
improve scalability. The second strategy is to improve the
performance of the symbolic execution engine. SymCC [34]
adopts a compilation-based approach (as opposed to the
traditional interpretation-based approach [35]) to symbolic
execution and improves the performance by up to three orders
of magnitude. Path merging [36], [37], [38], on the other hand,
reduces the number of paths by merging paths at the same
program location that are similar. We believe that these two
strategies are orthogonal to GOSHAWK and, when adopted,
can further improve the scalability of GOSHAWK. Once the

6ID: 1, 5, 23, 32, 33, 35, 36, 37, 38, 39, 41, 45, 46, 48 in Table VII. These
bugs existed in both Linux kernel 4.19 and 5.12



scalability is improved, we can then drop the thresholds to
also improve coverage.
Sources of False Positives/Negatives. Many inherent chal-
lenges of both control-flow and data-flow analysis (e.g., in-
direct call resolution, alias analysis, loop analysis) are still
not well addressed by state-of-the-art code analysis engines
and would lead to imprecise results. Such imprecision natu-
rally causes false positives and negatives. Since GOSHAWK
leverages an existing code analysis engine as its underlying
infrastructure, its bug detection has both false positives and
false negatives. GOSHAWK focuses on memory corruption
bug detection instead of addressing those well-known pro-
gram analysis deficiencies. We argue that these aspects are
orthogonal to GOSHAWK and we could benefit from their
improvements.

Our experiments show that by only utilizing NLP-assisted
MM function classification, although it could capture most
MM functions, GOSHAWK would incorrectly identify many
non-MM functions and thus incur false positives. When the
follow-up data flow analysis was applied to eliminate non-
MM functions, it unfortunately filtered out a small portion
of real MM functions and caused false negatives. Since most
bug detection systems tend to reduce false positives prior
to false negatives, our design combined the NLP-assisted
classification and data flow analysis based validation to prove
all the identified MM functions are accurate. Also, the result
in Section V-C demonstrates that GOSHAWK has acceptable
false positive and false negative rates.

VII. RELATED WORK

A. Memory Corruption Bug Detection

K-Miner [39] carries a scalable pointer analysis and inter-
procedural analysis to uncover memory corruption bugs. Hua
et al. [40] used machine learning to mitigate the imprecision
of pointer analysis when detecting use-after-free bugs in large
programs. They learned the correlations between program
features and pointer aliases to filter out ambiguous aliases
and then detected use-after-free bugs. CRED [41] is a path-
sensitive and pointer analysis based tool for detecting use-
after-free bugs. It scales down exponential numbers of con-
texts by a spatio-temporal context reduction technique and
achieves low false positive rates with a multi-stage analy-
sis. DCUAF [42] statically detects concurrency use-after-free
bugs in kernel drivers with a set of paired driver interface
functions which can be executed concurrently. However, these
approaches need a set of annotated allocation and deallocation
functions from code base to perform source-to-sink analysis
for detecting memory corruption bugs.

B. MM Function Identification Approaches

Pair-based Mining. Pair-based mining analyzes the relation-
ships among functions and matches these functions in pairs.
WYSIWIB [43] extracts data dependencies among functions
and identifies pairs of MM functions. Similarly, SinkFinder
uses data dependencies to find function pairs. It uses an
analogical reasoning mechanism to infer function pairs similar

to a given seed pair. PairMiner [10] also conducts similarity
comparison by using multiple keywords matching. Giving the
function pairs, it searches for the similar pairs of functions.

Some other approaches pinpoint function pairs relying
on tracking paths of error handling. PF-Miner [11] and
BP-Miner [44] track both normal execution paths and error
handling paths to recognize function pairs. K-MELD [6] adopts
the frequent pattern of <allocation call, pointer check, error
handling release, return> to identify allocation functions and
the matched deallocation functions from error handling paths.
HERO [7] relies on the pattern of paired function invocation
on normal execution paths and on reversely ordered error
handling paths to mine the paired functions.
Routine-based mining. Routine-base mining identifies func-
tions by abstracting the characteristics of a specific type of
functions. MemBrush executes programs and tracks the custom
memory allocators and deallocators. Based on the execution
flows, it then searches for functions that comply with these
flows in C/C++ binaries. DynPTA [45] relies on analyzing
the patterns of memory-allocation wrapper functions such
as invoking a libc memory-allocation function. Through the
patterns, DynPTA recognizes function wrappers and locates
the returned pointers that are related to memory allocation.
However, DynPTA is unable to deal with memory allocation
functions customized by developers.
Semantic-based mining. Targeting a specific type of func-
tions, semantics-based mining depends on semantic features of
specific functions to infer similar functions. Bai et al. [46] use
keywords to extract potential allocation and deallocation func-
tions by conducting a semantic analysis. Nonetheless, their
approach requires manual efforts to filter out the irrelevant
functions and insert the needed ones. SuSi [4] leverages a
set of human-annotated functions to train a SVM classifier.
The classifier is trained with a large number of human sum-
marized semantics and data flow features. It is then uses to
predict source and sink functions in Android framework. The
effectiveness of the classifier highly relies on the annotated
functions and features; thus such an approach requires a high
human effort. Instead of summarizing semantic features of
a group of specific functions, NLP-EYE[3] infers semantic
meanings of functions by comparing function prototypes with
a set of known functions. Although it could recognize function
semantics by analyzing function prototypes, its result is im-
precise because only few programming language and natural
language are involved.

VIII. CONCLUSION

We introduce MOS, a novel concept to implement structure-
aware and object-centric MM behavior summarization, and
use it to help detect complex memory bugs with character-
istics of nested allocation and unpaired uses of MM func-
tions. Our implemented MOS-enhanced bug detection system
GOSHAWK, combines NLP and data flow analysis to identify
MM functions, and finally finds 92 new bugs in recent versions
of Linux kernel, FreeBSD kernel, OpenSSL, Redis, and three
IoT SDKs via a MOS-enhanced memory object tracking.
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APPENDIX

A. MM Function Classification Model Generating

ULM-based Segmentation. We construct a programming cor-
pus to support function prototype segmentation based on the
occurrence of informal terms. First, we collect 20G questions
(including source code and description of questions) posted
on StackOverflow [16]. By taking these questions as input,
GOSHAWK removes all punctuation and generates meaningful
subwords by utilizing BPE [15] algorithm. BPE algorithm
initializes all the preprocessed contents as a sequence of
characters and iteratively merges the characters into different
units. By computing the occurrence frequency of each unit,
GOSHAWK regards the unit with the highest frequency as
a subword and adds the subword and its frequency to the
programming corpus.

Based on subwords in the programming corpus, GOSHAWK
segments each function prototype in different ways. To select
the most suitable segmentation, it calculates an occurrence
probability of each possible segmentation form by

P (res) =

subwords∏
w∈subwords

P (w) (1)

where P (res) denotes the occurrence probability of each seg-
mentation form and P (w) denotes the occurrence probability
of each subword. Finally, GOSHAWK selects the segmentation
form that has the highest probability.
Reference Set Creation. In order to recognize custom MM
functions, we manually create a reference set for function
comparison. To ensure the variety and representativeness of the
reference set, we extend the function prototype corpus by iter-
atively labeling more MM functions (e.g., from Linux kernel)
and training the Siamese network. Finally, 4,441 functions

(1,807 memory allocation functions and 2,634 memory deal-
location functions) are included in the reference set.
Siamese Network Training. GOSHAWK trains a Siamese
network to convert each subword list into a numeric vector
(containing natural language semantics) and classifies each
function prototype to a reference vector. Given the created
function prototype corpus where each function is classified as
a memory allocation function, a memory deallocation function,
or a non-MM function, GOSHAWK randomly pairs function
(fi, f

′
i) with ground truth pairing information yi ∈ {+1,−1},

where yi = +1 indicates that prototypes of function fi and
f ′
i are in the same category, yi = −1 otherwise. We denote

the vector of function prototypes fi and f ′
i as e⃗i and e⃗′i,

respectively. The output of the Siamese network for each pair
is the cosine similarity between e⃗i and e⃗′i.
MM Candidate Selection. By using the reference set and the
trained Siamese network, GOSHAWK classifies MM functions
from the tested project. Since we only aim to identify mem-
ory allocation and deallocation functions, we only consider
the vectors of the corresponding MM functions. Specifically,
let a⃗1, ..., a⃗na denote the reference vectors of the allocation
functions in the training function set and d⃗1, ..., d⃗nd denote the
reference vectors of the deallocation functions in the training
function set. Subscripts na and nd denote the number of allo-
cation and deallocation functions in the training function set,
respectively. To enhance comparison efficiency, we compress
the semantics of the reference vectors into vectors a⃗m and d⃗m
by averaging the weight of each function as follow:

a⃗m =
1

na

na∑
i

a⃗i
||⃗ai||

, d⃗m =
1

nd

nd∑
i

d⃗i

||d⃗i||
(2)

Then, for an unlabeled function ft we generate its proto-
type vector v⃗t by using the trained Siamese network. After
calculating the cosine similarity between v⃗t, a⃗m and v⃗t, d⃗m,
GOSHAWK can distinguish the type of ft if any of the
two similarity scores is higher than a threshold. And if so,
GOSHAWK assigns ft to its corresponding candidate set.

B. Official MM function set

The collected official memory allocation functions
are: malloc, kmalloc, kmalloc_array, krealloc_array,
kcalloc, kzalloc, kzalloc_node, vmap, vmalloc, vzalloc,
__vmalloc_node, vmalloc_no_huge, vmalloc_user,
vmalloc_node, vzalloc_node, vmalloc_32, vmalloc_32_user,
kmem_cache_alloc, kmem_cache_alloc_node, kvmalloc_node,
ioremap and mmap. The collected official memory deallocation
functions are: free, kfree, vfree, kmem_cache_free,
kfree_sensitive, kfree_const, kvfree, iounmap, vunmap and
munmap.



TABLE VI
GROUND TRUTH BUGS DETECTION RESULT FOR LINUX-4.19

PATCH ID Deallocator Success/Failure

1016104 f2fs_put_page Success
1016725 iput Success
1016937 iput Success
1018023 dev_kfree_skb_any Success
1018816 usb_free_urb Success
1151291 video_device_release Success
1149734 kfree_skb Success
1148926 kfree_skb Success
1148789 dma_free_coherent Success
1016402 dput Success
1016714 dput Success
1016907 dput Success
1149388 dma_fence_put Success
1149298 dma_fence_put Success
1149083 kmem_cache_destroy Success
1148731 devm_kfree Success
1147894 mempool_free Success
1017915 pci_dev_put Success
1017916 pci_dev_put Success
1017916 pci_dev_put Success
1149409 pci_dev_put Success
1149287 dma_pool_free Success
1149266 i915_gem_object_put Success
1016991 posix_acl_release Success
1149186 dst_release Success
1149184 dst_release Success
1018030 free_netdev Success
1016628 hfs_bnode_put Success
1016665 hfsplus_bnode_put Success
1018810 cfg80211_put_bss Failure
1149816 nfc_put_device Failure



TABLE VII. Previously unknown bugs found in Linux, FreeBSD, OpenSSL, Redis and IoT SDKs
ID Program File:line_number Buggy Function MM Function Type Confirmed MallocChecker

1 Linux drivers/gpu/drm/xen/xen_drm_front.c:555 xen_drm_drv_init kfree UAF ! !

2 Linux drivers/infiniband/sw/siw/siw_mem.c:116 siw_alloc_mr siw_mem_put UAF ! #

3 Linux drivers/scsi/myrs.c:2281 myrs_cleanup iounmap DF ! #

4 Linux drivers/ipack/carriers/tpci200.c:600 tpci200_pci_probe tpci200_uninstall DF ! #

5 Linux drivers/net/ethernet/qlogic/qlcnic/qlcnic_minidump.c:1424 qlcnic_83xx_get_minidump_template vfree UAF ! #

6 Linux lib/test_kmod.c:1148 register_test_dev_kmod vfree UAF #

7 Linux drivers/dma/dmaengine.c:1088 dma_async_device_register free_percpu DF ! #

8 Linux drivers/net/ethernet/myricom/myri10ge/myri10ge.c:2897 myri10ge_sw_tso dev_kfree_skb_any UAF ! #

9 Linux drivers/net/ethernet/netronome/nfp/bpf/cmsg.c:456 nfp_bpf_ctrl_msg_rx dev_kfree_skb_any UAF ! #

10 Linux drivers/net/wireless/intersil/hostap/hostap_80211_rx.c:1019 hostap_80211_rx dev_kfree_skb_any UAF #

11 Linux drivers/net/wireless/marvell/mwifiex/tdls.c:859 mwifiex_send_tdls_action_frame dev_kfree_skb_any DF ! #

12 Linux drivers/net/wireless/ath/ath10k/htc.c:656 ath10k_htc_send_bundle dev_kfree_skb_any UAF ! #

13 Linux drivers/crypto/qat/qat_common/adf_transport.c:173 adf_create_ring dma_free_coherent DF ! #

14 Linux drivers/net/ethernet/broadcom/bcm4908_enet.c:174 bcm4908_enet_dma_alloc dma_free_coherent DF ! #

15 Linux drivers/net/wireless/marvell/mwl8k.c:1474 mwl8k_probe_hw dma_free_coherent DF ! #

16 Linux drivers/net/wireless/intel/iwlwifi/queue/tx.c:1101 iwl_txq_dyn_alloc_dma dma_free_coherent DF #

17 Linux drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c:2477 gpmi_nand_init dma_free_coherent DF ! #

18 Linux drivers/scsi/be2iscsi/be_mgmt.c:533 beiscsi_if_clr_ip dma_free_coherent UAF #

19 Linux drivers/gpu/drm/i915/gt/gen8_ppgtt.c:631 gen8_preallocate_top_level_pdp i915_gem_object_put UAF ! #

20 Linux drivers/misc/ibmasm/remote.c:265 ibmasm_init_one input_free_device UAF ! #

21 Linux drivers/misc/ibmasm/remote.c:266 ibmasm_init_one input_free_device UAF ! #

22 Linux net/tipc/socket.c:1268 tipc_sk_mcast_rcv kfree_skb DF ! #

23 Linux drivers/net/ethernet/qualcomm/emac/emac-mac.c:1459 emac_mac_tx_buf_send kfree_skb UAF ! #

24 Linux drivers/net/ethernet/cisco/enic/enic_main.c:860 enic_hard_start_xmit kfree_skb UAF ! #

25 Linux net/ipv6/ip6_tunnel.c:1439 ip6_tnl_start_xmit kfree_skb DF #

26 Linux drivers/scsi/bnx2fc/bnx2fc_fcoe.c:444 bnx2fc_rcv kfree_skb DF #

27 Linux net/nfc/digital_dep.c:1287 digital_tg_recv_dep_req kfree_skb DF ! #

28 Linux drivers/video/fbdev/hyperv_fb.c:1273 hvfb_probe framebuffer_release DF ! !

29 Linux drivers/net/wan/hdlc_fr.c:417 pvc_xmit __skb_pad DF ! #

30 Linux drivers/firmware/efi/efi.c:937 efi_mem_reserve_persistent memunmap UAF ! #

31 Linux net/rds/message.c:350 rds_message_map_pages rds_message_put UAF ! #

32 Linux drivers/infiniband/ulp/isert/ib_isert.c:477 isert_connect_request isert_device_put UAF ! #

33 Linux drivers/scsi/st.c:1272 st_open scsi_tape_put UAF ! #

34 Linux drivers/nvme/target/rdma.c :803 nvmet_rdma_write_data_done nvmet_rdma_release_rsp UAF ! #

35 Linux drivers/block/drbd/drbd_nl.c:4917 get_initial_state nlmsg_free UAF ! #

36 Linux drivers/block/drbd/drbd_nl.c:4924 get_initial_state nlmsg_free UAF ! #

37 Linux drivers/block/drbd/drbd_nl.c:4930 get_initial_state nlmsg_free UAF ! #

38 Linux drivers/block/drbd/drbd_nl.c:4936 get_initial_state nlmsg_free UAF ! #

39 Linux drivers/block/drbd/drbd_nl.c:4942 get_initial_state nlmsg_free UAF ! #

40 Linux drivers/scsi/mpt3sas/mpt3sas_scsih.c:11438 pcie_device_make_active pcie_device_put UAF #

41 Linux sound/isa/sb/emu8000.c:1029 snd_emu8000_create_mixer snd_ctl_free_one UAF ! #

42 Linux drivers/misc/habanalabs/gaudi/gaudi.c:5615 gaudi_memset_device_memory hl_cb_put UAF ! #

43 Linux drivers/infiniband/hw/bnxt_re/qplib_res.c:853 bnxt_qplib_alloc_res pci_iounmap DF ! #

44 Linux drivers/block/null_blk/main.c:1980 null_init null_free_zoned_dev DF ! #

45 Linux sound/isa/sb/sb16_csp.c:1048 snd_sb_qsound_build snd_ctl_free_one UAF ! #

46 Linux sound/isa/sb/sb16_csp.c:1050 snd_sb_qsound_build snd_ctl_free_one UAF ! #

47 Linux drivers/acpi/acpica/dbnames.c:561 acpi_db_walk_for_fields acpi_os_free UAF #

48 Linux drivers/media/platform/exynos4-is/fimc-isp-video.c:314 isp_video_release v4l2_fh_release UAF ! #

49 Linux fs/orangefs/orangefs-cache.c:49 purge_waiting_ops op_release UAF #

50 FreeBSD netsmb/smb_rq.c:742 smb_t2_request_int smb_rq_done UAF ! #

51 FreeBSD net/rtsock.c:979 update_rtm_from_rc free UAF ! !

52 FreeBSD netgraph/ng_checksum.c:687 ng_checksum_rcvdata m_freem DF ! #

53 FreeBSD netpfil/ipfw/dn_aqm_codel.c:273 aqm_codel_enqueue m_freem DF ! #

54 FreeBSD netpfil/ipfw/dn_aqm_pie.c:561 aqm_pie_enqueue m_freem DF ! #

55 FreeBSD netpfil/ipfw/dn_sched_fq_codel.c:205 codel_enqueue m_freem DF ! #

56 FreeBSD netpfil/ipfw/dn_sched_fq_pie.c:751 pie_enqueue m_freem DF ! #

57 FreeBSD dev/cxgb/cxgb_sge.c:2784 get_packet m_freem UAF ! #

58 FreeBSD dev/oce/oce_if.c:1229 oce_tx m_freem DF ! #

59 FreeBSD contrib/ipfilter/netinet/ip_nat.c:6253 ipf_nat_rule_deref KFREE UAF ! !

60 FreeBSD contrib/ngatm/netnatm/msg/uni_ie.c:7149 DEF_IE_ENCODE uni_msg_destroy UAF ! #

61 FreeBSD dev/acpica/acpi_pci_link.c:916 acpi_pci_link_route_irqs AcpiOsFree DF ! !



62 FreeBSD dev/ocs_fc/ocs_hw.c:11806 ocs_hw_async_call ocs_free DF ! !

63 FreeBSD dev/ocs_fc/ocs_sport.c:266 ocs_sport_free ocs_free UAF ! !

64 FreeBSD dev/qlnx/qlnxe/ecore_spq.c:1012 ecore_spq_post OSAL_FREE UAF ! !

65 FreeBSD kern/uipc_socket.c:485 sodealloc crfree UAF ! #

66 FreeBSD netgraph/bluetooth/hci/ng_hci_evnt.c:541 le_connection_complete ng_hci_free_con UAF ! #

67 FreeBSD rpc/rpcsec_gss/rpcsec_gss.c:595 rpc_gss_marshal mem_free DF #

68 OpenSSL penssl/apps/cmp.c:1694 setup_request_ctx X509_REQ_free DF ! #

69 OpenSSL crypto/srp/srp_vfy.c:687 SRP_create_verifier_ex BN_clear_free DF ! #

70 OpenSSL crypto/ts/ts_rsp_verify.c:320 int_ts_RESP_verify_token X509_ALGOR_free DF ! #

71 OpenSSL engines/e_loader_attic.c:491 try_decode_PKCS8Encrypted X509_SIG_free DF ! #

72 OpenSSL test/evp_extra_test.c:577 test_EVP_PKEY_ffc_priv_pub OSSL_PARAM_free DF ! #

73 OpenSSL test/evp_extra_test.c:593 test_EVP_PKEY_ffc_priv_pub OSSL_PARAM_free DF ! #

74 OpenSSL test/evp_extra_test.c:609 test_EVP_PKEY_ffc_priv_pub OSSL_PARAM_free DF ! #

75 OpenSSL engines/e_loader_attic.c:709 try_decode_X509Certificate X509_free DF ! #

76 OpenSSL engines/e_loader_attic.c:210 new_EMBEDDED OPENSSL_free UAF ! !

77 Redis src/replication.c:3404 replicationCron freeClient UAF ! #

78 Azure iothub_service_client/src/iothub_messaging_ll.c:1575 IoTHubMessaging_LL_Send message_destroy DF ! !

79 Azure uamqp/src/amqp_definitions.c:10446 sasl_mechanisms_get_sasl_server_mechanisms amqpvalue_destroy DF #

80 Azure src/uamqp_messaging.c:1184 readApplicationPropertiesFromuAMQPMessage amqpvalue_destroy DF !

81 Azure uamqp/src/cbs.c:639 cbs_put_token_async amqpvalue_destroy DF #

82 QcloudE samples/asr/asr_data_template_sample.c:416 main HAL_Free DF ! !

83 QcloudE samples/data_template/data_template_sample.c:520 main HAL_Free DF ! !

84 QcloudE samples/ota/ota_mqtt_sample.c:299 _get_local_fw_info HAL_Free UAF ! !

85 QcloudE samples/ota/ota_mqtt_sample.c:300 _get_local_fw_info HAL_Free DF ! !

86 QcloudE samples/scenarized/light_data_template_sample.c:837 main HAL_Free DF ! !

87 QcloudE sdk_src/services/asr/asr_client.c:674 IOT_Asr_Init HAL_Free UAF ! !

88 QcloudE sdk_src/services/data_template/data_template_client.c:870 IOT_Template_Construct HAL_Free DF ! !

89 QcloudH samples/mqtt/multi_thread_mqtt_sample.c:202 _mqtt_message_handler HAL_Free UAF ! !

90 QcloudH samples/multi_client/multi_client_shadow_sample.c:226 _shadow_client_thread_runner HAL_Free DF ! !

91 QcloudH samples/ota/ota_mqtt_sample.c:289 _get_local_fw_info HAL_Free UAF ! !

92 QcloudH samples/ota/ota_mqtt_sample.c:290 _get_local_fw_info HAL_Free DF ! !
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