
Enhancing Security in Third-Party Library Reuse -
Comprehensive Detection of 1-day Vulnerability

through Code Patch Analysis

Shangzhi Xu§, Jialiang Dong§, Weiting Cai†, Juanru Li‡, Arash Shaghaghi§, Nan Sun§, Siqi Ma§*

§The University of New South Wales
Emails: {shangzhi.xu, jialiang.dong, a.shaghaghi, nan.sun, siqi.ma}@unsw.edu.au

†Delft University of Technology
Email: weitingcai2020@gmail.com

‡Feiyu Tech
Email: romangol t@hotmail.com

Abstract—Nowadays, software development progresses
rapidly to incorporate new features. To facilitate such growth
and provide convenience for developers when creating and
updating software, reusing open-source software (i.e., third-
party library reuses) has become one of the most effective
and efficient methods. Unfortunately, the practice of reusing
third-party libraries (TPLs) can also introduce vulnerabilities
(known as 1-day vulnerabilities) because of the low maintenance
of TPLs, resulting in many vulnerable versions remaining in
use. If the software incorporating these TPLs fails to detect the
introduced vulnerabilities and leads to delayed updates, it will
exacerbate the security risks. However, the complicated code
dependencies and flexibility of TPL reuses make the detection of
1-day vulnerability a challenging task. To support developers in
securely reusing TPLs during software development, we design
and implement VULTURE, an effective and efficient detection
tool, aiming at identifying 1-day vulnerabilities that arise from
the reuse of vulnerable TPLs. It first executes a database creation
method, TPLFILTER, which leverages the Large Language
Model (LLM) to automatically build a unique database for the
targeted platform. Instead of relying on code-level similarity
comparison, VULTURE employs hashing-based comparison to
explore the dependencies among the collected TPLs and identify
the similarities between the TPLs and the target projects.
Recognizing that developers have the flexibility to reuse TPLs
exactly or in a custom manner, VULTURE separately conducts
version-based comparison and chunk-based analysis to capture
fine-grained semantic features at the function levels. We applied
VULTURE to 10 real-world projects to assess its effectiveness
and efficiency in detecting 1-day vulnerabilities. VULTURE
successfully identified 175 vulnerabilities from 178 reused TPLs.

I. INTRODUCTION

As software evolves various innovative functionalities
nowadays (e.g., AI-based classification, unmanned operations),
it makes software increasingly complicated and challenging to
develop and maintain because of intricate dependencies among
its massive functions. Open-source software (OSS) reuse en-

ables developers to integrate the functionalities faster, which
facilitates more efficient development and code maintenance.
Simultaneously, reusing OSS supports flexible development of
features because developers can either deploy OSS as TPLs
exactly or in a custom manner [46]. However, this convenience
also makes it more likely for developers to unintentionally in-
troduce vulnerabilities, known as 1-day vulnerabilities, through
TPL reuse [21] [43]. Such security issues are commonly
brought because 1) some TPLs may no longer be actively
maintained anymore, leaving their functionalities incomplete
or vulnerable to security risks, especially when vulnerabilities
are exploited; 2) the decentralized nature of OSSes makes it
difficult to keep track of all code changes made by contributors,
complicating the enforcement of security reviews and practices
when reusing the TPLs; 3) TPLs are not always developed by
following the best practices, which can make them more vul-
nerable. For instance, MOVEit Transfer, a file transfer project,
experienced a security breach due to SQL injection in June
2023, which puts all dependent software at risk of unauthorized
access; thus the dependent software is required to install the
patched version to safeguard their data promptly [35].

To explore 1-day vulnerabilities brought by TPL reuses,
some studies [26] [28] [48] only analyze the reuses without
any modifications (i.e. exact reuse) by employing similarity
comparison, which identifies whether the functions from TPLs
are invoked in the target program. Unfortunately, exact reuse
is only a small portion of TPL reuse because of its functional
restrictions during software development. The flexibility of
custom TPL reuse enhances functionality customization, yet
it simultaneously introduces challenges in recognizing TPL
reuse and detecting 1-day vulnerabilities caused by TPL reuse.
Although some existing tools, such as V1SCAN [46] and
MVP [51], claimed that they are capable of analyzing custom
TPL deployment, these tools can only handle simple custom
reuses with minor modifications, which leaves the problem far
away from being fully resolved. Making 1-day vulnerability
detection more complicated, developers may fix vulnerable
TPL functions in a custom way, rather than using official
updates or upgrading the entire TPLs [19].

To bridge the above gaps, we propose VULTURE, a novel
vulnerability detection tool, to explore the potential 1-day vul-

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240576
www.ndss-symposium.org



nerabilities brought by TPL reuses effectively and efficiently.
As TPLs designed for different target platforms vary signif-
icantly [54], VULTURE first conducts a mutually promoted
approach, TPLFILTER, to heuristically refine existing OSSes
by selecting the TPLs appropriate for the specific target plat-
form(s). It constructs a multifaceted database that includes all
the vulnerable and patched TPLs through LLM-based commit
slicing. Instead of retaining all information (e.g., project code,
descriptions, fix commits) of each TPL, TPLFILTER condenses
each TPL version into several independent functions, and
then converts the functions into compact and numerical tuples
using the LSH algorithm [25]. According to the TPL database
generated by TPLFILTER, VULTURE employs a similarity-
based method to detect TPL reuse within the target program,
identifying both the reused TPLs and their versions.

Based on the database, VULTURE undertakes a dual TPL
analysis to meticulously examine exact and custom code reuse.
In particular, VULTURE first conducts version-based analysis
to explore exact TPL reuses by identifying the vulnerable TPL
versions from the target program. Then, it employs fine-grained
reformatting through code tokenization and chunk-based anal-
ysis to identify custom TPL reuse. To preserve semantic and
contextual information, VULTURE generates each chunk by
conducting intra-procedural analysis to collect information
on variables (i.e., values, operations, and relative positions)
involved in code modifications during the transition from the
vulnerable code to the patched code. By comparing the chunks
with the target program, VULTURE reports whether any 1-day
vulnerabilities exist and pinpoints their exact locations.

To assess the effectiveness of TPLFILTER and VULTURE,
we created a benchmark by manually analyzing 68 real-
world projects, labeling 200 TPL reuses, and identifying 200
vulnerable reused functions from those reuses. By integrating
the database created by TPLFILTER, VULTURE successfully
identified 184 vulnerable reused functions, achieving an F1
@ 95.8% while the state-of-the-art tool, V1SCAN only de-
tected 100 vulnerable reused functions, achieving an F1 @
66.7%. VULTURE not only outperforms the state-of-the-art
academic tool but also surpasses the commercial tool. We
applied VULTURE and a commercial detection tool SNYK [12]
to analyze TPL reuses within 10 real-world projects on a
large scale. VULTURE outperformed SNYK by identifying 175
vulnerabilities from 178 TPL reuses, while SNYK identified
111 vulnerabilities and V1SCAN only identified 13. Our find-
ings indicate that custom adaptations of TPLs are widespread,
representing about 55% of all reuses. Additionally, the majority
of 1-day vulnerabilities were due to the reuse of outdated
TPLs, a problem often compounded by poor maintenance
and the lack of thorough fix guidance from public security
advisories.

Contribution:

• A novel approach to automatically build an extendable
database tailored for TPL analysis on a designated plat-
form.
We design a mutually promoted approach, TPLFILTER,
that integrates keyword searching with a LLM to explore
the commonly used TPLs, along with the associated
vulnerabilities and patch code. All vulnerabilities and
patch information are then gathered to create a TPL
vulnerability database.

• An effective 1-day vulnerability detection tool to discover
the reused TPLs and any potential vulnerabilities that
have been exploited. We design a 1-day vulnerability
detection tool, VULTURE, that employs locality-sensitive
hashing (LSH) comparisons and a dual intra-procedural
analysis to exploit target programs semantically and
syntactically. It can distinguish the vulnerable TPLs by
recognizing both the official patches provided by TPL
owners and the custom patches created by developers.

• A comprehensive evaluation across TPLFILTER and
VULTURE. We evaluate both TPLFILTER and VULTURE
by comparing them with state-of-the-art tools on real-
world projects. VULTURE discovered 175 vulnerabilities
from 10 real-world IoT projects and provided 154 patch
commits.

Availability. The source code of VULTURE
and the experiment datasets are available at
https://github.com/ShangzhiXu/VULTURE Detector.

II. BACKGROUND

A. Third-party Library Reuse

Developers extensively employ TPLs to cater to the diverse
requirements of different users. For example, multiple MQTT
client libraries are designed to simplify the deployment and
implementation for connecting remote devices such as IoT
devices, while zlib is frequently employed for managing file
compression and decompression.

To recognize used TPLs, state-of-the-art detectors usually
operate across three phases. First, a TPL database contain-
ing whitelists of known libraries is built. These whitelists
are typically generated through manual analysis and require
regular updates. Given the database, detectors then collect the
representative features/signatures (e.g., invoked functions [30],
[48], [49], keyword tokens [37], [44], function dependen-
cies [18], [27], [31], [42], [53]) of the OSS utilized as the
target for TPL reuse detection (i.e. target program). To en-
hance the effectiveness of TPL reuse detection, some detectors
optimize the process by eliminating redundant functions and
statements [48] or defining the significance level of each
function [42], [49]. The similarity score between the collected
representative features/signatures and the libraries stored in
the database is further calculated. Reuse is confirmed if the
similarity score exceeds a pre-defined threshold. The major
challenge in detecting reused TPLs is the inconsistency of
reusing TPLs within different targeted programs.

TPL database construction. Without a universal standard, de-
velopers across different platforms (e.g., IoT firmware, mobile
operating systems, Open-source software) tailor varied infras-
tructures to meet specific objectives. Hence, TPL providers
sometimes offer specialized versions of TPLs to better adapt
to specific platform(s). For instance, CocoaMQTT [2], Paho
Android Service [10] and Paho MQTT C/C++ client [11] are
MQTT client libraries for iOS, Android, and embedded plat-
forms, respectively. Hence, the TPL database used for reuse
matching must be:

• Comprehensive: TPLs that are commonly invoked within
the targeted platform must be included.

2

https://github.com/ShangzhiXu/VULTURE_Detector


1995 May 2010 Aug

2011 Sep

2018 May

zlib
Start to maintain at:

zlib.net 

Linux
Reused zlib at:

linux/lib/zlib_deflate

TrinityCore
Reused zlib at: 

dep/zlib

zlib
Mirrored to: 

github.com/madler/zlib

TizenRT
Reused zlib at: 

external/grpc/extlib/zlib2005 May

Fig. 1: Example of zlib Maintenance and Reuse

• Specific: Different platforms may have unique libraries
that cannot be used by the other platforms. To avoid false
alarms, libraries specific to other platforms, unnecessary
for the targeted platform, or projects not used as libraries
must be excluded during the detection process.

• Maintainable: TPLs are often developed to accelerate
the development cycle of open-source software and are
regularly updated to fix bugs and integrate new features.
Hence, the libraries included in the database should also
be extendable — to accommodate the newly-created li-
braries, updatable — to include the latest library versions,
and traceable — to track all previous revision details.

Unfortunately, the existing TPL databases [27], [48], [49] fall
short of the necessary standards as they are neither compre-
hensive nor specific, and they lack efficient mechanisms for
updates to include additional whitelists. When updating these
databases, it is imperative to reconstruct them by meticulously
repeating all of the steps, including the library collection
and redundancy elimination. This process is time-consuming,
particularly because redundancy elimination typically incurs
higher costs, requiring approximately 100 hours [48], [49].
Therefore, a powerful and adaptive database is expected to
be built.

Detection of TPL reuse. Apart from the platform diver-
sity, each TPL includes a variety of functions to serve
different purposes, allowing developers to choose specific
APIs that align with their unique requirements. For instance,
coreMQTT [3] provides two APIs, MQTT_ProcessLoop()
and MQTT_ReceiveLoop(), for receiving packets from the
transport interface iteratively. If it is not necessary to keep
the receiving portal alive, MQTT_ProcessLoop() can be
selected; otherwise, MQTT_ReceiveLoop() should be cho-
sen. Therefore, it is necessary to check the functions invoked
in the target program by matching them with the functions
declared in the libraries. Nonetheless, such similarity-based
determination is heuristic and highly relies on a threshold
established through manual observation. A high threshold
might miss some cases; whereas a low threshold leads to many
false alarms. Due to the diverse infrastructure, developers may
modify some functions in TPLs to fit their code structure
better, rather than reusing TPLs exactly, which complicates
the similarity comparison process as well. Hence, additional
details such as birth times of when each version of TPLs was
created are employed as auxiliary information [48]. Relying
on single auxiliary information may be insufficient to validate
the complicated dependencies among TPLs and the dependent
software.

Considering the real-world TPL reuses demonstrated in
Figure 1 as an example, it illustrates the dependencies among

zlib, Linux, TrinityCore, and TizenRT, and the birth time of
each project. Specifically, zlib was created at zlib.net in May
1995 and was mirrored to GitHub in September 2011. Linux,
TrinityCore, and TizenRT separately reuse zlib for compression
and decompression; thus three projects share some common
functions that are invoked from zlib. Since zlib was initially
released on its own websites and only appears on GitHub
later than both Linux and TrinityCore, the validation through
function similarity comparison and birth time ranking [48]
consequently wrongly indicates that TizenRT reuses functions
from both Linux and TrinityCore.

Conclusion 1: The comparison process should be op-
timized by incorporating sufficient and accurate TPL
information for effective TPL reuse detection.

1-day vulnerability detection within TPLs. The integration
of TPLs within the development cycle of OSS not only
offers convenience for implementing common features but also
introduces security and privacy hazards by importing security
issues. Some of these vulnerabilities arise from integrating
the vulnerable versions of TPLs [16], [28], [46], [50], [58],
while others occur because of the violations of specific usage
requirements [19], [56], [60]. 1-day vulnerabilities are typically
caused by the former.

Similar to TPL reuse detection, some vulnerable features
are required for syntactical and semantic comparison to rec-
ognize the potential vulnerabilities introduced by the reused
TPLs. According to the types of reused TPLs, the exact TPL
reuses can be commonly analyzed via feature comparison [19],
[50], [58] or even solely through the comparison of TPL
versions. However, real-world TPL reuse can be customized by
modifying specific segments to achieve functional objectives.
While some studies have considered customized reuses, they
heavily rely on coarse-grained semantic analysis to pinpoint
the common features that appear in both vulnerable code
and patches (e.g., variable names [28], core lines of state-
ments [46], coarse-grained function abstraction [51]). Many
false alarms are consequently reported. Hence, it is essential to
differentiate the critical statements and operations that are the
root causes of a vulnerability for vulnerability identification.

Considering the TPL reuses in ReactOS (shown in Fig-
ure 2) as an example, ReactOS originally reused vulnerable
TPL versions of libjepg-turbo and mbedtls. Then it patches the
vulnerabilities in a custom way. While the statement contents
remain the same, the line numbers where the statements are
located and the format of the statements changed, such alter-
ation challenges the existing approaches [28] [46] to accurately
identify the custom patches.

Conclusion 2: Selecting critical vulnerable features that
contribute to the generation and mitigation of a vulnera-
bility can enhance the effectiveness and efficiency of 1-
day vulnerability detection.

B. CVE and Commit Analysis

Software assessment relies on publicly available informa-
tion on vulnerabilities and security patches, which is typically

3



Fig. 2: ReactOS patching of CVE-2018-14498 and CVE-2017-14032. Due to custom reuse, the ReactOS patch differs from the
official one in statement format and the line numbers where the patches are applied.

provided by CVE [5] and NVD [8]. However, many vulnerabil-
ities disclosed by CVE/NVD come with either vague security
patch information or no patch information whatsoever [45].

Commit ranking is a common process [20], [40], [41], [45]
of labeling direct references between security patch-related
commits and vulnerabilities. To identify the patch commit
of a vulnerability, specific sets of features related to commit
candidates and the vulnerabilities (e.g., vulnerability location,
vulnerability identifier) are collected. Then, a pre-trained rank-
ing model is used to estimate the relevance between each
commit and the vulnerability. The most relevant commits
related to security patches are supposed to be prioritized.
Nonetheless, the ranking results highly rely on the quality of
the selected correlation features and the information collected
from CVE/NVD, which are typically manual processes. Al-
though the manual effort is a one-time cost, the variable quality
of the data collected by humans can affect the accuracy and
reliability of the commit ranking. Driven by the fact that public
LLMs such as GPT-4.0 have undergone extensive training on a
vast array of data accessible online, including documentation,
blogs, and forums, LLMs have become highly proficient in
grasping the semantic meaning of natural language [13].

Conclusion 3: LLM can assist in natural language
processing to analyze commits and CVE descriptions
semantically and syntactically. It minimizes manual ef-
forts, enhancing the data quality in identifying security-
related information and assessing the implications of code
changes.

III. OVERVIEW

the

Figure 3 illustrates the workflow of VULTURE for detecting

1-day vulnerabilities introduced by reusing TPLs. VULTURE
consists of three phases, TPLFILTER Construction, TPL Reuse
Identification, and 1-day Vulnerability Detection.

TPLFILTER Construction. VULTURE employs TPLFILTER
to construct a unique database tailored specifically for the
target platform. It is comprised of two segments, the compo-
nent segment, and the vulnerability segment. The component
segment contains the TPL details (e.g., TPL names, TPL ver-
sions, and code information) while the vulnerability segment
includes information on vulnerabilities that have previously or
currently existed in the previous and current versions of each
TPL, respectively.

TPL Reuse Identification. Given a target program, VULTURE
conducts a function-level TPL reuse detection. By extracting
the function hashing of all functions in the target program,
VULTURE identifies the TPLs and their versions that have
been reused by the target program via function-based similarity
comparison. To eliminate the false alarms driven by the custom
TPL reuses, VULTURE analyzes the dependencies among TPLs
to optimize the results and creates a TPL reuse report.

1-day Vulnerability Detection. As TPLs are reused in two
different ways, i.e., exact reuse and custom reuse, VULTURE
analyzes each type of reuse by utilizing version-based match-
ing and chunk-based analysis, respectively. Through version-
based matching, VULTURE specifically identifies the functions
that are reused exactly and verifies whether these functions
are vulnerable by searching for the official patches provided
by the TPL contributors. In cases of custom reuses, VULTURE
re-generates the modified functions into chunk representatives
and analyzes the code modifications within each chunk. It
can determine whether the modifications introduce any vul-
nerabilities at a granular level. As TPLFILTER includes the
official patches for certain vulnerable TPLs, VULTURE further
provides fix suggestions based on the reported vulnerabilities.

4



1.  TPLFILTER Construction 2. TPL Reuse Identification

Similarity
Comparison

Function Hash 
Hashing

Birth-time Comparison

Path-name Comparison

Target Program

 Identification Optimization

3. 1-day Vulnerability Detection

CVE-Commit Mapping

Patch Commit

V1 V2 ...... Vn

V1.2

Release Slice

Reused
LibraryRedundant

Function
Elimination

Vulnerability
Report

Selection

TPL
Selection

TPL Hash

Flaw ReportLine Match

Chunk Match

Chunk Extraction

Code Format Syntactic Analysis

Chunk-based Analysis

File Path
Version

Func Hashing

CVE ID
CPE

Patch Commit
Reuse Report

TPL Summary

SynChunk Process

Candidate
Vulnerability
Extraction

Component 
Segment

Vulnerability 
Segment

Candidate Libraries

Public database

Birth Time

Description
Parsing

Commit
Mapping

LLM

Fig. 3: Workflow of VULTURE

IV. VULTURE

A. TPLFILTER

To detect 1-day vulnerabilities introduced by TPL reuses,
VULTURE must 1) identify the reused TPLs in the target
program; 2) verify whether the reused TPL version is vulner-
able; 3) suggest if any potential patch is available. Therefore,
VULTURE is required to construct a database, containing the
TPLs commonly used by a platform and the corresponding
vulnerable and patch information as a detection reference.

1) TPL Selection: As TPLs vary across different plat-
forms, VULTURE executes TPLFILTER to construct a database
containing TPLs specific to the targeted platform (e.g., IoT
firmware, Android, iOS). Since most open-source projects are
maintained and operated on GitHub, TPLFILTER first collects
all prevalent libraries from GitHub or existing TPL databases,
such as OpenWRT [9] and Awesome Android [1]. To select
TPLs specific to the target platform, we manually created
a keyword list of the most commonly used keywords for
describing the target platforms. Through the keyword list,
TPLFILTER performs keyword matching to determine if the
titles, tags, and descriptions of each collected TPL contain
any of the specified keywords. Additionally, TPLFILTER
scans the project metadata, official websites of projects, and
README files to identify the keywords (e.g., system, server,
firmware) for non-library project exclusion. For each selected
TPL, TPLFILTER clones them from GitHub and lists all the
published versions through git tag.

2) Component Segment Construction: Within the database,
TPLFILTER gathers detailed information on each selected TPL
to construct the component segment. GitHub repositories and
official websites may provide a variety of information about the
TPL, including details about their functions, file names, license
information, and the creation time of each library (i.e., birth
time). However, we observed that file names are not unique
to every TPL and licenses are not formally organized by all
target programs, which may negatively affect the effectiveness
of TPL reuse detection. Alternatively, TPLFILTER analyzes
functions declared in each TPL and their birth times to

build the database, For efficiency, rather than storing all the
complicated details of functions, TPLFILTER calculates a hash
value for each function and stores them in the component
segment.

To minimize false alarms arising from string-matching in
the handling of custom patches, TPLFILTER employs LSH to
process each function. LSH is a fuzzy hashing technique that
hashes similar input items into the same “buckets” with high
probability, thereby enhancing the accuracy of data compari-
son [25]. Hence, TPLFILTER analyzes each TPL version and
extracts all functions with ctags. Then, it calculates the hash
value of each function.

Simultaneously, it executes git log to identify the birth
time of each function from the commit histories. Each function
is then represented as fc =< H,Birth >, where H is the
hash value of the function and Birth refers to its birth time.
Hence, each version of a TPL is comprised of the functions,
represented as FC = {fc(i)|1 ≤ i ≤ n}, where n is the
maximum number of functions included in the TPL version.
As a TPL A may invoke functions from another TPL B (i.e.,
A depends on B), such dependencies may lead to redundant
comparisons when analyzing function similarities.

Although some previous works (e.g., Centris [48] and
OSSFP [49]) also utilize LSH to calculate hash values, these
works identify redundant functions with hash value similar-
ity comparison rather than exact match identification. Such
schemes become inefficient when comparing functions on a
large scale. To eliminate redundant comparisons, TPLFIL-
TER employs a hashing-index based elimination method that
narrows down the scope by searching for functions with
identical hash values. Specifically, TPLFILTER first identifies
the functions fc(i) and fc(j) by comparing hash values H(i)
and H(j). Among all the functions with the same hash values,
it selects the function with the earliest birth time and removes
the other functions.

3) Vulnerability Segment Construction: To support the de-
termination of whether the reused versions of TPLs contain
any vulnerabilities, TPLFILTER collects all vulnerabilities

5



associated with each version of the TPLs in the component
segment. As some developers may patch vulnerabilities on
their own without updating TPL versions, TPLFILTER assesses
security patches, instead of TPL version, to identify whether
a vulnerability affects the target program. Hence, TPLFILTER
collects security patches of each collected vulnerability, and
compiles these vulnerabilities and their respective security
patches in the vulnerability segment.

Vulnerability detail collection. As the majority of vulnera-
bility reports are typically listed on CVE and NVD, VULTURE
crawls the vulnerability reports from these websites. Within
these reports, each vulnerability is assigned a unique CVE ID
for identification and is described using a CPE (Common Plat-
form Enumeration) to specify the software versions affected.

Given each TPL stored in the component segment, VUL-
TURE first filters the vulnerability reports whose descriptions
contain the TPL name at a coarse level by invoking the
NVD API with keywordSearch1 . Nonetheless, vulnerabil-
ity descriptions encompass not only the names of vulnerable
libraries but also the names of other software impacted by these
vulnerable libraries, rendering keyword searches less precise.
Therefore, VULTURE conducts a CPE-guided matching to filter
vulnerability reports for effective vulnerability identification.
Specifically, to determine whether a vulnerability affects a
target TPL, it retrieves the CPE information in the vulnera-
bility report and checks whether the target TPL name is the
substring of the CPE string. If the target TPL name is matched,
VULTURE regards that the vulnerability affects the target TPL
and records the corresponding information of the CVE ID,
its CPE, and the vulnerable TPL version(s). Typically, CPE
manages the vulnerable software versions in two ways: through
enumerations or version intervals. For enumeration, VULTURE
directly extracts all vulnerable version numbers. In the case
of interval specification, VULTURE first obtains and ranks all
versions of a TPL in ascending order, and then determines the
start and end versions that fall within the specific vulnerable
version interval.

Unfortunately, we inspected that some vulnerability reports
are informally written, thus these vulnerabilities might be over-
looked by keyword searches and CPE matching. To address
such issues, VULTURE extracts additional vulnerability reports
from public databases including SNYK [12] and the official
websites of TPLs [7] [4] for further detail matching.

Security patch collection. VULTURE collects security patches
for each vulnerability to support accurate 1-day vulnerability
detection and examine whether a reused TPL in the target
programs has been patched. Although CVE/NVD includes patch
information for some vulnerabilities, a significant portion of
the patch information is not updated timely or maintained
properly [6], [36]. Alternatively, TPLs maintained on GitHub
frequently release security patches as GitHub commits, which
typically include descriptions of vulnerabilities as well as
detailed code changes.

To effectively and comprehensively obtain the vulnera-
bility patches, VULTURE constructs an LLM-based multi-
sliced patch searching approach to locate the specific security

1https://services.nvd.nist.gov/rest/json/cves/2.0?keywordSearch={*}, where
element * refers to the name of the target TPL.

patches of each vulnerability. Given the CVE description main-
tained by CVE/NVD and the repository commits maintained by
GitHub of each TPL, VULTURE proceeds with the following
four steps:

1) LLM-based description parsing: The vulnerability detail
provided by CVE/NVD typically consists of the vulnerability
description (e.g., vulnerability type, vulnerable files, vulnerable
functions, vulnerable variables, and some specific vulnerable
features), and CPE describing the affected TPL information
(e.g., vendor(s) of the TPL, TPL name and versions). Corre-
spondingly, VULTURE employs a LLM by invoking GPT3.5 to
parse the vulnerability description and then extracts the vul-
nerable elements affected by the vulnerability, i.e., vulnerable
files, vulnerable functions, and vulnerable variables.

2) Slice-based commit filtering: As a vulnerable TPL repos-
itory may contain numerous commits that cover document
changes, routine common bug fixes, feature modifications, and
vulnerability patches, it is time-consuming and error-prone
to analyze those commits one by one. Therefore, VULTURE
conducts a date-specific commit slicing to exclude the commits
confirmed to be irrelevant to the vulnerabilities at a coarse-
grained level. Specifically, VULTURE first identifies all the
vulnerable versions from the vulnerability description and CPE
information. Since the version released immediately after the
last vulnerable version is typically the first patched version
of a vulnerability, VULTURE extracts the timestamps of when
the last vulnerable version and the first patched version were
published. Correspondingly, all the commits generated within
the time range between these two timestamps are considered
as potential patch commits. Then, it divides the potential patch
commits into multiple slices based on average partitioning
(i.e., each slice contains k commits. Within each slice i,
VULTURE calculates a code diff diffi between the first and the
last commits. If diffi contains any of the vulnerable elements,
VULTURE labels the slice i as a candidate slice, indicating that
at least one commit within this slice contains modifications
related to vulnerability-specific code elements. Otherwise, it
continues analyzing the next slice i+ 1.

3) Candidate commit selection: After locating the candidate
slice, VULTURE performs fine-grained analysis to select the
candidate commits that are related to the vulnerability. It
compares vulnerable code with each patch to generate a code
diff. If the code diff includes any of the vulnerable elements,
VULTURE labels the commit as a candidate commit and
advances to step (4) for further confirmation.

4) LLM-based patch commit mapping: VULTURE employs
LLM to confirm the patch commits. On one hand, some
commits within the candidate commits may also modify the
vulnerable elements yet are not the patch regarding the target
vulnerability, requiring VULTURE to exclude these commits;
on the other hand, some CPE information provided by NVD
is incorrect [24] which may lead to false alarms. To address
the challenges, VULTURE takes as input the CVE description
and each candidate commit (i.e., commit description and the
modified code), and invokes GPT4.0 to infer whether the CVE
and the commit are relevant. It is important to note that only
minor candidate commits are needed to be analyzed here, thus
GPT4.0 incurs minimal costs to calculate the correlations.

A detailed example of patch commit mapping is illustrated

6



in Appendix A.

B. TPL Reuse Identification

To determine what TPLs are reused in each target pro-
gram, VULTURE takes as input the component segment of
the database to check whether these TPLs are invoked. It first
employs an LSH algorithm to generate a list of TPL candidates
that the target program may use. Subsequently, it refines the
identification process by incorporating additional information
for further confirmation.

1) Candidate Library Detection: As TPLs may be reused
either exactly or in a custom manner, relying solely on match-
ing function names and code statements may overlook such
custom cases. Hence, VULTURE leverages the LSH algorithm
to conduct code similarity analysis.

Specifically, VULTURE first extracts all files along with
their paths from the target program and then proceeds with
these files one by one. Then, VULTURE divides each file within
the target program into target function snippets based on the
declared functions. Given each function snippet, it uses Python
TLSH, an LSH-based fuzzy matching library, to generate a
unique hash value, Each target function snippet i can be rep-
resented by a 2-tuple: ft(i) =< Hash(i), Func path(i) >,
where Hash is the hash value of the target function snippet
i and Func path represents the file path where the function
snippet i is defined. VULTURE then computes the similarity
between the target function snippets and TPL functions in
the component segment. For each target function snippet i,
VULTURE compares it with each function j from the TPL
iteratively. In particular, it takes as input Hash(i) and H(j)
and leverages TLSH to calculate a similarity score between
functions i and j. If the similarity score falls below a hash
threshold THhash, the function pair of i and j is consid-
ered similar. After all target function snippets are analyzed,
VULTURE calculates the total number of similar function
pairs. When the total number exceeds a similarity threshold
THsim, it represents that the corresponding TPL may be
used. Since different versions of a TPL may vary significantly,
VULTURE identifies the version with the highest number of
similar function pairs as a TPL prevalent version and then
captures the information of the TPL (i.e., TPL name, hash
value of the function in the TPL, TPL version, and the file path
where the TPL is reused in the target program) to store in the
candidate TPL list. It is important to note that when multiple
TPL versions have the same number of similar function pairs,
VULTURE randomly selects one version as the TPL prevalent
version. VULTURE iteratively analyzes all functions in the
target program and collects a list of candidate TPLs that are
potentially reused.

2) Identification Optimization: The common similarity-
based approaches, such as Centris, may produce a signifi-
cant number of false positives because 1) TPLs with similar
functionalities may employ the same functions; 2) the inter-
dependencies among TPLs may result in a high degree of
function overlap between TPLs. To accurately select which
TPL is reused, VULTURE leverages auxiliary information, i.e.,
file paths and birth time, to optimize the candidate list.

Some existing approaches (e.g., SNYK [12]) use TPL
licenses to identify reuses because the target program must

declare a TPL license either in a LICENSE file or through
an annotation when reusing. However, we observed that these
TPL licenses are usually written inconsistently and informally,
without adhering to standards. VULTURE may overlook the
declared TPLs when using such information. Hence, VULTURE
examines file paths illustrating where TPLs are reused in the
target program and the birth time of each TPL as the indicators.
Generally, the target program places code that reuses TPLs
under a separate directory and then names the directory with
a title similar to the TPL name. The birth time is used to
pinpoint the first invocation of the reused function, thereby
eliminating the redundant TPL dependencies involved during
function comparison.

To confirm the reused TPLs, VULTURE first groups TPL
candidates together when they share the same file path in the
target program. For the TPL candidates in the same group,
a path tokenizer is used to divide each file path into tokens
based on the separators (e.g., space, backslash, and colon).
Then VULTURE compares each token with the name of each
TPL candidate and calculates a Jaccard similarity score [34],
and selects the TPL candidate(s) with the highest Jaccard
similarity score as the confirmed reused TPL. Note that a
file may invoke functions from multiple TPLs, thus several
TPLs can have the same Jaccard similarity score. VULTURE
further addresses the inheritance cases where several TPLs
share the same score to locate the confirmed reused TPL. First,
VULTURE gathers the remaining TPL candidates sharing the
same hash value H into a group, indicating that these TPLs
are related. Within each group, VULTURE compares the birth
time of each TPL and identifies the one with the earliest birth
time as the parent TPL of the group (i.e., the confirmed TPL of
the target program). All the remaining TPL candidates in the
group are then removed. For each target program, VULTURE
eventually generates a TPL reuse report containing all the
confirmed reused TPLs.

C. 1-day Vulnerability Detection

When the TPL reuse report discloses that a vulnerable
version of TPL has been reused, VULTURE then determines
whether any vulnerable functions are being invoked exactly
or in a custom way. Hence, VULTURE implements a dual
analysis strategy at the function level, utilizing version-based
and chunk-based analyses to distinguish exact and custom
reuses, respectively.

1) Version-based analysis: By inspecting the reused TPLs,
we found that some developers may reuse a vulnerable TPL
version, but patch the vulnerable code snippets themselves.
Therefore, VULTURE utilizes a diff-inspired version-based
analysis to examine a TPL reuse from three aspects: 1) whether
reuse is exact or customized in terms of TPL reuses; 2) whether
the reused TPL version is vulnerable; and 3) whether the
exploited vulnerabilities are patched.

In detail, VULTURE first takes the TPL reuse report as input
to extract the reused TPL and its version. According to the
TPL name and the version, it queries the vulnerability segment
of the database to verify if the reused version of the TPL
was linked to any CVE report. If a CVE report is identified,
VULTURE extracts the vulnerable and patched version of the
code related to the CVE, and then utilizes diff to locate the

7



code diff Diffvp. Subsequently, VULTURE analyzes the Diffvp
to determine if the modified items in Diffvp are functions
or global declarations (e.g., global variables, structures, and
macros). For functions, VULTURE extracts and records the
entire function of both the vulnerable and patched code as
the vulnerable and patched functions, respectively; while for
global declarations, VULTURE records them as the vulnera-
ble and patched global declarations. Then, within the target
program, leveraging ctags, VULTURE specifically labels each
code snippet as either a function or a global declaration and
compares them with vulnerable/patched functions/declarations,
respectively.

As a result, VULTURE distinguishes TPL reuses in the
target program into four groups and processes each group with
function-level granularity, ensuring that unused functions in the
TPLs do not affect the detection accuracy:

G1: No vulnerable reuse. It indicates a target program
reuses the vulnerable version of a TPL without involving any
vulnerable functions or vulnerable global declaration.

• Analysis: When all the target code snippets are exactly
equal to the patched function or the patched global
declaration, VULTURE regards the target program as G1.
The target programs in this group are considered secure.

G2: Vulnerable global declaration reuse. It represents that
a target program only reuses vulnerable global declarations.

• Analysis: When any of the global declarations in a target
code snippet exactly equals to that of the vulnerable
global declarations, VULTURE regards the target program
as G2.

• Confirmation: VULTURE employs line matching to iden-
tify the vulnerable declarations. If a global declaration
that is deleted from the vulnerable TPL continues to
appear in the target code snippet, VULTURE considers
that a vulnerability is identified. Furthermore, when a
global declaration added to the patched TPL does not
appear in the target code snippet, VULTURE considers
the target program as vulnerable. A 1-day vulnerability is
then identified.

G3: Exact vulnerable reuse: It represents that a target pro-
gram exactly reuses the vulnerable function of a TPL without
providing any patches.

• Analysis: VULTURE labels the target program as G3 if
any target functions are equal to the vulnerable functions.

• Confirmation: VULTURE utilizes TLSH to compute the
hash values of the vulnerable function and the target
function snippet. If any function in the target program
shares the same hash value as the vulnerable function,
VULTURE considers it unpatched and classified to G3. A
1-day vulnerability is then identified.

G4: Custom reuse: It represents that a target program reuses
the vulnerable or patched functions with custom modifications.

• Analysis: VULTURE labels the target program as G4
if any target functions are similar to the vulnerable or
patched functions. If the similarity score for any pair of
functions exceeds THsim, VULTURE classifies the target
program as G4.

• Confirmation: VULTURE uses TLSH to compare the hash
values of each function in the target program with those
of the vulnerable function. Since it involves custom reuse,
it is uncertain whether the target program is secure; thus,
VULTURE confirms the vulnerable custom reuses via a
chunk-based analysis.

2) Chunk-based analysis: To preserve the semantic and
syntactic information that is overlooked by function [28] and
line matching [46], static analysis has traditionally been used,
but it comes with significant challenges. First, static analy-
sis requires compilable code, which is problematic because
patches are often provided as isolated snippets that cannot
be compiled directly. Second, static analysis demands an
extensive environment setup for compilation, which is both
time-consuming and resource-intensive.

To resolve the issues brought by the traditional static
analysis, VULTURE utilizes chunk-based code analysis to
examine custom reused functions, striking a balance between
efficiency and accuracy in semantic information extraction
without the reliance on compilation. For these customized
functions, VULTURE verifies whether these custom modifica-
tions provide the same security functionality as those in the
official patches released by TPL contributors. Specifically, for
chunk-based analysis, a chunk represents a group of modified
lines focused on a specific functionality. In a given function,
the lines within the same chunk are either governed by the
same control structures (e.g., if-else, while, for) or
operate on the same set of variables. A chunk preserves both
the semantic meaning and contextual relationships embedded
within the patch code, ensuring an accurate assessment of
custom adaptations.

Taking as input the information of CVE ID, vulnerable
code snippets, patched code snippets, Diffvp, and target code
snippets, VULTURE proceeds with the following steps:

Chunk construction. When reusing TPLs, the target program
might alter the format of the reused code. Thus, VULTURE first
standardizes all code snippets, including target code snippets,
vulnerable code, and the patched code. According to the LLVM
coding standard2, VULTURE removes unnecessary entities such
as leading spaces, comments, and constant strings.

After normalization, VULTURE separately initiates code
diff among the target, vulnerable, and patched code snippets.
The comparison correspondingly yields three code diff (i.e.,
Diffvt, Diffpt, and Diffvp), where Diffvt is the code diff between
the target and vulnerable code snippets, Diffpt is the code diff
between the target and patched code snippets, and Diffvp is the
code diff between the vulnerable and patched code snippets.
Each line in the above code diff is treated as an individual
chunk. We manually predefined 40 regular expressions, cov-
ering all types of statements (e.g., call expressions, binary
operations). Using these regular expressions, VULTURE then
extracts the variables and operations involved in each chunk.
It further adopts a disjoint-set union algorithm to identify the
data-dependent chunks when 1) the chunks are part of the
same control block without any nested control structures, or 2)
chunks share the same variable. Eventually, all related chunks

2LLVM Coding Standard: https://llvm.org/docs/CodingStandards.html

8



are merged, while those unmerged chunks remain independent
from each other.

Vulnerability detection. After constructing the chunks, VUL-
TURE uses chunk matching to determine if variables in the
target code snippet have been patched. Initially, VULTURE con-
ducts disjoint checking by pairwisely comparing each chunk
in Diffvt and Diffpt with the chunks from Diffvp to determine
whether the patches have been applied to the target program.
If both sets of Diffvt and Diffpt share the same variables
with Diffvp, VULTURE further performs line matching. A
vulnerability is considered “patched” if all lines in Diffvp
appear in Diffvt, but disappear in Diffpt. Otherwise, VULTURE
further executes operation match. When all operations in Diffvp
appear in Diffvt, but disappear in Diffpt, it indicates that the
vulnerability has been patched via customized modifications.
If both matching conditions are failed, a 1-day vulnerability is
considered to be “found”.

A detailed example for chunk-based detection is depicted
in Figure 4. The code snippet A at the top represents the
patch code, while code snippet B at the bottom shows the
customized patch. To construct chunks, VULTURE initially
treats each added line in the patch and reused code as an
individual chunk. Next, VULTURE merges these chunks based
on semantic relationships and context. For instance, in the
patch code snippet A, the first four lines are merged into a
single chunk because they share the same variable, cmaplen.
Similarly, the last two lines are incorporated into another chunk
as the same control block governs them.

After constructing the chunks, VULTURE starts to process
chunk matching. In the above example, chunk C pairs with
chunk E, and chunk D pairs with chunk F. Code B is classified
as patched, since the line match was unsuccessful (indicated
by the highlighted lines on the left side), the operation match
succeeded (indicated by the highlighted lines on the right side).
This scenario of custom patch may lead to false positives
in other systems like V1SCAN, but VULTURE can accurately
identify the patch.

A

B

C

D

METHODDEF(JDIMENSION) get_8bit_row(...){
    
  +   int cmaplen;
    ...
  +  cmaplen = source->cmap_length;
    ...
  + if (t >= cmaplen)
  +   return 1;
    output++ = colormap[0][t];
    ...
  + if (getUsed(bitClrUsed))
  +     return 1;
    ...
}

METHODDEF(JDIMENSION) get_8bit_row(...){
    
  +   int cmaplen = source->cmap_length;
    ...
  + if (t >= cmaplen)
  +    return 1;
    output++ = colormap[0][t];
    ...
  + if (getUsed(bitClrUsed))
  +    return 1;
    ...
}

Line numbers [5，6] 
Variable [bitClrUsed]
Operation [
 bitClrUsed: {callexpr, arg0}    
]

Line numbers [1,2,3,4] 
Variable [cmaplen, source->cmap_length]
Operation [
 cmaplen: {assign;left; 

   source->cmap_length}
          { >=; right; t}
 source->cmap_length：
          {assign; right;cmaplen}
]

F

REUSE

Line numbers [5，6] 
Variable [bitClrUsed]
Operation [
 bitClrUsed: {callexpr, arg0}    
]

Line numbers [1,2,3,4] 
Variable [cmaplen, source->cmap_length]
Operation [
 cmaplen: {assign;left; 

   source->cmap_length}
          { >=; right; t}
 source->cmap_length：
          {assign; right;cmaplen}
]

E

Fig. 4: Chunk extraction and match

After processing all potential vulnerabilities for the tar-
get program through version-based and chunk-based analysis,
VULTURE will generate a comprehensive vulnerability report.
This report not only includes the CVE-ID of the vulnerability
but also provides the patch commit URL from our vulnerability
segment of the database, along with details of the chunks
involved in the detection process, to facilitate further patching
on 1-day vulnerabilities by developers.

V. EXPERIMENT

We evaluate the performance of VULTURE across two
aspects: the accuracy of TPL reuse detection, and the effec-
tiveness in detecting 1-day vulnerabilities introduced by the
reused TPLs.

A. Experiment Setup

Although VULTURE can be applied to any arbitrary plat-
form for 1-day vulnerability detection, we applied VULTURE to
IoT projects as a representative in our following experiments.
In detail, VULTURE collected all prevalent repositories from
GitHub, OpenWRT, stm32duino, awesome-cpp, awesome-c,
and mongoose-os-libs in C/C++, and then conducted TPL
selection to choose the specific TPLs. After filtering the
repositories via keywords, 19,057 libraries were left. These
libraries were consolidated into a database named DBkwd.
After identifying the dependent libraries and only retaining
the parent TPLs, VULTURE eventually built a TPL database
DBiot containing 1,872 IoT-specific TPLs, which include TPL
names, all TPL versions, hash values, and birth times of
functions within the TPL to store as the component segment
within DBiot. According to the collected TPLs, VULTURE
explored 5,114 CVE reports, of which, 1,717 CVEs have
GitHub patches available. These CVE reports and patches are
stored as the vulnerability segment within DBiot.

We evaluated the performance of each component in VUL-
TURE against corresponding state-of-the-art works. To evaluate
the database quality, (Section V-B), we selected Centris, SNYK
and VFCFinder [20]. For vulnerability detection (Section V-C),
we chose V1SCAN, TPLite [27], and SNYK. Although MVP is
also a 1-day vulnerability detection tool, was excluded due to
its lower reported performance compared to V1SCAN. Each
tool was implemented by using its latest version as of April
2024, following the instructions provided by developers.

We ran VULTURE on a machine with Debian GNU/Linux
12, 32GB RAM and 1TB SSD. For patch commit collection,
we set the search slice size k at 20. For similarity comparison,
we set THhash = 30 and THsim = 10% after manual testing
to achieve optimal detection results.

B. Database Evaluation

We evaluated the two segments (i.e., component segment
and vulnerability segment) within the database, DBiot, respec-
tively.

1) Component Segment Evaluation: A suitable database
for TPL reuse detection must be comprehensive, specific, and
maintainable (refer to Section II); thus we conducted two
experiments to evaluate whether DBiot adheres to these char-
acteristics while ensuring the database size remains relatively
small:

9



• Characteristic comparison. We compared DBiot with
the prevalent library database published recently [48]
[27].

• Database integration. We integrated DBiot with the
state-of-the-art TPL reuse detection tool, Centris, to verify
if its detection performance is enhanced.

Characteristic Comparison. We compared DBiot with
DBkwd and the databases constructed by Centris (i.e.,
DBcentris) and TPLite (i.e., DBtplite) from three aspects:
storage consumption, efficiency and maintainability.

The comparison results are listed in Table I. In total, DBiot

includes only 1,872 libraries related to IoT, requiring 3.5 GB
of storage, but DBkwd and DBcentris consume ten times more
storage because they include many irrelevant libraries through
random TPL selection. In contrast, TPLFILTER effectively
filters out most irrelevant libraries when constructing DBiot.

When processing each TPL, although DBiot, DBkwd, and
DBcentris cost the same time to clone one TPL repository
and calculate function hash values within it, DBcentris needs
115.1s on average to eliminate the redundant functions within
each TPL whereas DBiot only needs 0.1s to remove the
redundancy. As most detection tools adapt similarity com-
parisons to identify the reused TPLs, the database accuracy
significantly affects the search space and detection efficiency.
Specifically, the search space of DBiot is smaller than both
DBkwd and DBcentris, indicating that when using DBiot, much
fewer similarity comparisons are needed to identify one TPL
reuse. With frequent updates to TPLs, databases for TPL
reuse detection need to be updated and maintained easily.
However, the time needed to update DBcentris is more than
100 hours. On the contrary, DBiot requires only a few minutes
to update, supported by hashing-index based elimination to
remove redundancy. Although TPLite also creates a database
for TPL reuse detection, its database creation requires large
storage to store excessive library details, including all function
details. Its storage capacity became overwhelmed when only
processing 1,000 TPLs, indicating that using TPLite to build a
database for TPLite is impractical.

Database Integration. To test how DBiot performs when in-
tegrate with state-of-the-art tools, we compared DBiot, DBkwd

and DBcentris in detecting TPL reuses on the Top-10 IoT
projects in C/C++ from GitHub as the target programs. Details
of these projects are listed in Appendix B.

Table II shows the results when integrating Centris with the
three different databases. When using DBcentris, Centris only
identified 71 TPL reuses; however, its performance improved
significantly, detecting 174 and 112 TPL reuses when leverag-
ing DBiot and DBkwd, respectively. Notably, although DBiot

has the smallest size, its comprehensiveness and specification
enabled Centris to detect more reuses than the other two larger
databases.

2) Vulnerability Segment Evaluation: We compared VUL-
TURE against the state-of-the-art CVE patch mapping tool
VFCFinder, commonly employed schemes Link Matching
(directly collect patch information from CVE/NVD refer-
ences) [46] and SNYK Database Retrieval [12], assessing their
mapping accuracy, time cost, and space cost, respectively. The

patch commits can be directly collected from CVE/NVD and
are assumed available for all the solutions.

We exclude PatchScout [41] and VCMatch [45] from the
comparison because both schemes demonstrably underperform
compared to VFCFinder [20], as discussed and evaluated in the
study.

Commit benchmark. We randomly selected 200 CVEs and
manually identified the corresponding patch commits using
information from the NVD website and project commits.
Overall, 158 (out of 200) CVEs have been labeled with the
corresponding patch commits and the other 42 (out of 200)
CVEs are labeled with “None” whose patch commits cannot
be found within the given CPE scope manually (from the last
vulnerable version to the fixed version).

Mapping accuracy. We quantified the number of patch com-
mits identified by each of the three methods and manually
validated the results. Table III presents the number of patch
commits identified by each method (Detected) and the num-
ber of correctly identified patches confirmed through manual
verification (Confirmed). Additionally, to quantify the overall
performance of each method, we also considered their ability
to handle cases labeled with “None” and calculated the F1
score (F1). As shown in the table, VULTURE successfully
identified the highest number of validated patch commits
(124) while generating zero false alarms. For the 34 patch
commits that were not identified, we found that 33 were due
to the absence of any information related to the vulnerable
elements (files, functions, variables) in the CVE descriptions
for revealing vulnerability details. For instance, the description
of CVE-2007-0457 3 in the NVD is “Unspecified vulnerability
in the IEEE 802.11 dissector ...”, which provides no useful
information about the vulnerable elements. The one remaining
failed case occurred because the LLM (GPT-4) was unable to
accurately identify the patch commit among the candidates in
Step 4 (IV-A3). Instances of this kind of failure are relatively
rare. In general, in terms of the F1 score, VULTURE achieved
the highest F1 score among all approaches with a significant
advantage.

To prevent data bias and ensure even data distribution, we
divided the dataset into five groups and performed 5-fold group
validation to verify the performance of VULTURE. VULTURE
achieved F1 scores of 87.5%, 88.9%, 88.51%, 88.50%, and
86.11% in each validation round, respectively, demonstrating
its effectiveness.

Time and space cost. We compared the time and space
overhead of VULTURE and VFCFinder. To evaluate the time
overhead performance, we randomly selected 50 CVEs that
all the two methods could successfully identify the patch
commits. For space overhead, we calculated the average space
expenditure required to match each CVE directly on the ground
truth dataset. The experimental results are shown in Table IV.
As indicated, VULTURE exhibited the lowest time overhead
(in both average and median values) and the smallest space
overhead. In terms of space overhead, VFCFinder requires
cloning the GitHub repository locally to obtain candidate com-
mits, which results in significant additional space overhead. In
contrast, VULTURE accesses candidate commits via the GitHub

3https://nvd.nist.gov/vuln/detail/CVE-2007-0457

10



TABLE I: Maintainability of Each Database

Database TPL Number Time Cost Per TPL Processing Storage Total(GB) Frequency of Comparisons Detection Time

Clone (s) Elimination (s) Exact (s) Similarity

DBiot 1,872 50.5 0.1 3.5 9,207.1 2.2 256.4
DBkwd 19,057 50.5 0.1 37.4 10,657.5 5.1 301.7

DBcentris 10,288 50.5 115.1 20.0 1,508,924.7 4.4 -

TABLE II: TPL Reuse Detection Result of Centris

Target DBcentris DBiot DBkwd

Dtc Cfm Dtc Cfm Dtc Cfm

AliOS-Things 22 15 81 36 78 21
LiteOS 15 6 26 9 23 4
Tasmota 28 17 93 55 85 41
TizenRT 31 22 72 37 78 22
kamailio 3 1 9 2 11 2
mbed-os 7 3 22 10 35 11

openthread 2 2 5 2 7 1
Sming 5 3 48 18 10 5

TDengine 3 1 4 3 9 4
zephyr 1 1 3 2 8 1

Total 117 71 363 174 334 112

Dtc: Reuses detected.
Cfm: Reuses confirmed with manual check.

TABLE III: Performance of Security Patch Mapping

Scheme Detected Confirmed F1 (%)

Link Matching 47 47 45.86
Snyk Database Retrieval 60 60 55.05

VFCFinder (Top-1) 158 79 61.69
VFCFinder (Top-5) 158 98 71.53

VULTURE 124 124 87.94

API and only needs to use commits at runtime as temporary
variables, incurring no additional space overhead.

The Impact of Search Space on Time Cost. The time cost
required for identifying patch commits is directly related to
the number of candidate commits due to the difference in
search space. We developed an empirical study on the 158
CVEs which are labeled with patch commits in the ground
truth dataset. This study aimed to reveal how the time cost of
different methods varies with the distribution of the number of
candidate commits.

Here, we categorized the distribution of candidate commit
numbers N into three ranges: ❶ 100 > N > 0, ❷ 1000 >
N ≥ 100, and ❸ N ≥ 1000. Among the total 158 labeled
CVEs, the distribution of the number of commits is as follows:
❶ 96, ❷ 54, and ❸ 8. Furthermore, we selected a total of 9
CVEs covering the three candidate commit number ranges to
analyze the time cost of different approaches and evaluate their
usability. As shown in Figure 5, the horizontal axis represents
the CVE ID with the number of candidate commits in the
brackets; the vertical axis denotes the time overhead, measured
in seconds. As observed, the time overhead of each approach
positively correlates with the number of candidate commits.
Besides, with the number of candidate commits increases, the
time overhead of VFCFinder becomes substantially large; in
contrast, even when the number of candidate commits reaches

TABLE IV: Time and Space Cost of Security Patch Mapping

Scheme Time Cost (s) Space Cost (MB)

Mean Median Mean

VFCFinder 285.92 71.90 337.94
VULTURE 84.68 42.31 0.00

CVE-2
01

1-
17

64
(3

0)

CVE-2
01

6-
18

97
(4

2)

CVE-2
01

9-
10

89
9

(4
8)

CVE-2
01

6-
63

06
(2

21
)

CVE-2
01

9-
91

83
(2

94
)

CVE-2
02

1-
28

13
5

(3
87

)

CVE-2
02

2-
23

09
4

(9
34

)

CVE-2
00

7-
64

41
(1

,4
07

)

CVE-2
01

2-
53

60
(3

,8
31

)

CVE-ID (Number of Candidate Commits)

0

1000

2000

3000

4000

T
im

e
C

os
t

(s
)

VFCFinder

Vulture

Fig. 5: Correlation between the number of candidate commits
and the time cost

thousands, VULTURE can still keep the time overhead within
a few hundred seconds.

C. Benchmark Vulnerability Detection

We further assessed how VULTURE performs when detect-
ing 1-day vulnerabilities introduced by the reused TPLs. We
compared VULTURE with the state-of-the-art work, V1SCAN.
The other tools were excluded because of various constraints.
In detail, OSSFP is not available as open-source, and SNYK
requires information on copyright and license, which is incom-
patible with our benchmark.

Vulnerability benchmark. To the best of our knowledge, there
is no existing benchmark specifically for 1-day vulnerabilities
in C/C++ programs. Therefore, we manually constructed a
ground truth vulnerability benchmark. The benchmark com-
prises 200 vulnerable function reuse cases sourced from var-
ious repositories with more than 100 stars on GitHub. These
200 cases cover the reuse of 66 CVEs. Among these cases,
45% have patched the CVE they reused, while 55% have
not. Additionally, 64% of these cases involve custom reuse,

11



TABLE V: Vulnerability Detection Result on Ground Truth

Scheme Item Reuse Type Total
Custom Reuse Exact Reuse

VULTURE

Dtc-P 72 19 91
Cfm-P 65 19 84
Dtc-N 87 22 109
Cfm-N 78 22 100

V1SCAN

Dtc-P 51 10 61
Cfm-P 35 10 45
Dtc-N 66 14 80
Cfm-N 42 13 55

Dtc: Vulnerabilities been detected.
Cfm: Vulnerabilities been confirmed with manual check.
P: Results on patched vulnerabilities.
N: Results on non-patched vulnerabilities.

including function name modification, statement modification,
and operation modification.

Scrutinize of results. The results are shown in Table V.
We compared VULTURE with V1SCAN. For custom reuse,
VULTURE successfully identified 65 patched and 78 unpatched
cases, with only four false negatives and 12 false positives.
In contrast, V1SCAN identified 35 patched and 42 unpatched
cases. For exact reuse, VULTURE identified 19 patched and 22
unpatched cases without any false negatives or false positives,
whereas V1SCAN detected 10 patched and 13 unpatched
cases with one false positive. Overall, VULTURE achieved a
95.8% F1 score, significantly outperforming V1SCAN, which
achieved only a 66.7% F1 score.

After manually being confirmed by three PhD students
from computer science majors, we observed that V1SCAN
produced a significant number of false negatives due to the
limited comprehensiveness of its database. Additionally, it
generated many false positives, which stemmed from inherent
design flaws in its detection algorithm, as detailed in two
motivational examples. VULTURE reported 4 false negatives
and 12 false positives in total. Out of these, 4 false negatives
and 8 false positives were a result of the limitations inherent in
chunk-based detection methods. Chunk-based method allows
us to pinpoint modified code lines only within their respective
control statements. If a modified line is not associated with any
control statement, its precise location remains unidentifiable,
which can result in inaccuracies. Additionally, the other 4
false positives arose from the limitations of similarity-based
detection. If the reused function is significantly modified, the
Hash(i) and H(j) can’t be identified accurately (IV-B1), lead-
ing VULTURE to miss recognizing the actual reused function.
Nevertheless, these issues are relatively infrequent in real-
world scenarios.

D. Reuse and Vulnerability Detection In the Wild

To ensure the robustness of our evaluation, we tested how
does VULTURE performs when facing real-world software. The
target programs selected for this analysis are consistent with
those listed in Table II. We then conducted a comprehensive
analysis involving both TPL reuse detection and 1-day vulner-
ability detection using VULTURE.

1) TPL reuse detection: In this experiment, we executed
VULTURE to detect the reused TPLs in the target programs by

TABLE VI: TPL Reuse Detection Result of VULTURE

Target DBiot DBkwd

Dtc Cfm P Dtc Cfm P

AliOS-Things 47 33 0.70 61 20 0.33
LiteOS 18 12 0.66 19 4 0.21
Tasmota 66 54 0.82 63 39 0.62
TizenRT 44 34 0.77 51 20 0.39
kamailio 7 2 0.29 10 2 0.20
mbed-os 17 12 0.70 28 10 0.36

openthread 4 2 0.50 4 1 0.25
Sming 32 24 0.75 3 3 1.00

TDengine 3 3 1.00 4 2 0.50
zephyr 2 2 1.00 5 1 0.20

Total 240 178 0.74 248 102 0.41

Dtc: Reuses detected.
Cfm: Reuses confirmed with manual check.

utilizing DBiot and DBkwd, respectively.

Table VI demonstrates the detection results. VULTURE cor-
rectly detected 178 reused TPLs when using DBiot, achieving
a precision of 74%; however its precision is only 41% when
integrating DBkwd. Upon manually inspecting the failed cases,
we found that 18 out of 62 were caused by the non-library
projects in the DBiot. These projects, such as LuatOS, are
not libraries themselves but are still reused by many other
software, making them difficult to filter out manually. These
non-library projects affect the specification of the database and
cause VULTURE to mistakenly identify them as the reused
TPL instead of the actual parent libraries. Nine failed cases
are caused by 9 TPLs which are filtered out by VULTURE
because these libraries are not prevalent on GitHub with a few
stars (< 100 stars). Due to the preset thresholds, THhash and
THsim, 29 cases failed as a result of overestimating similarity.
Unfortunately, adjusting the thresholds could potentially result
in additional failed or missed cases. The final six failed cases
were due to the reuse of prevalent functions by many TPLs,
which prevented VULTURE from accurately identifying the
actual TPL being reused. Such prevalent functions can be
categorized into cryptographic functions (e.g., md5Update,
parse_hex4), utility functions (e.g., hammingDistance),
and common functions (e.g., strcpy).

The disparity in the detection results between using DBiot

and DBkwd arises because DBkwd contains many non-IoT-
specific libraries. This lack of specificity results in incorrect
identification of parent TPL reuse as child TPL reuse, leading
to a high number of false positives. In contrast, DBiot, as a
curated subset focused on IoT-related libraries, minimizes such
misidentifications and achieves higher specificity. We did not
incorporate VULTURE with DBcentris due to its lack of critical
information (e.g., birth time, file path information) required by
VULTURE.

2) 1-day vulnerability detection: Here, we applied VUL-
TURE, V1SCAN and SNYK to identify real-world 1-day vul-
nerabilities. Table VII only highlights the top 5 target pro-
grams with the highest number of detected vulnerabilities.
The remaining 5 target programs were found to have no
vulnerabilities according to the detection results.

Table VII shows that VULTURE is the most effective tool,
identifying 175 vulnerabilities, and consistently outperforms
SNYK and V1SCAN across all test targets. In comparison,

12



TABLE VII: Vulnerability Detection Result in Wild Software

Target VULTURE SNYK V1SCAN

Dtc Cfm Dtc Confm Dtc Cfm

AliOS-Things 93 89 105 84 8 2
LiteOS 19 19 22 16 3 3

TizenRT 68 66 16 10 11 8
Tasmota 1 1 2 0 0 0

TDengine 0 0 3 1 0 0

Total 181 175 148 111 22 13

Dtc: Vulnerabilities been detected.
Cfm: Vulnerabilities been confirmed with manual check.

TABLE VIII: Time cost of TPL reuse and 1-day vulnerability
detection across different tools (in seconds)

Target VULTURE V1SCAN

TPL reuse 1-day TPL reuse 1-day

AliOS-Things 20.1 3.0 23.5 11.8
LiteOS 14.1 3.9 28.1 8.7
Tasmota 5.5 129.9 7.1 -
TizenRT 9.2 2.1 8.1 8.8

TDengine 37.2 - 59.4 -

The values in the table represent the average time (in seconds) required
to detect a single TPL reuse or a single 1-day vulnerability. A dash (”-”)
indicates that no reuses or vulnerabilities were identified.

SNYK detected 111 vulnerabilities, and V1SCAN detected
only 13. Furthermore, VULTURE also pinpointed the exact
locations and specific code statements that required to be
patched, and provided 154 GitHub patch commit URLs for
the identified vulnerabilities. However, SNYK only reported the
CVE ID and provided 59 GitHub patch commit URLs, without
offering further detailed information about the specific code
requiring patching, and V1SCAN provided only 13 GitHub
patch commits and limited information about vulnerabilities,
such as the vulnerable file and function names,

While manually verifying the missed cases, we observed
that SNYK heavily relies on version information maintained by
the target program. When a program does not maintain such
information well, such as TizenRT, SNYK will miss numerous
vulnerabilities. When analyzing 87 vulnerabilities missed by
V1SCAN, we found that 64 were caused by its limited database
and others resulted from its coarse-grained line-matching ap-
proach. Besides, SNYK and V1SCAN incorrectly reported 37
and 9 vulnerabilities, respectively. Our manual checks revealed
that these inaccuracies stemmed from SNYK’s reliance on
version-based detection and V1SCAN’s coarse-grained line-
matching methods.

While analyzing the six vulnerabilities missed by VUL-
TURE, but detected by SNYK and V1SCAN, three of them
were missed due to the absence of patch commits which are
mandatory for VULTURE to locate patches. The remaining
cases involved extensive code modifications, which caused
VULTURE to fail in pairing the reused functions.

3) Time cost: We assessed the time cost of VULTURE and
V1SCAN in detecting TPL reuse and 1-day vulnerabilities.
Table VIII illustrates the time cost. Typically, VULTURE costs
no more than 25s to recognize all TPL reuses and less than
5s to identify a 1-day vulnerability even when handling large

programs like AliOS-Things. In contrast. V1SCAN usually takes
more than 25s to locate a reuse and more than 5s to report a
1-day vulnerability. When analyzing programs with extensive
TPL reuses (e.g., Tasmota), VULTURE takes longer to identify
a single 1-day vulnerability, but V1SCAN times out without
reporting any.

E. Limitation

Database Accuracy. The performance of VULTURE heavily
relies on the database quality. Since VULTURE uses vulnerable
elements and patched code to identify 1-day vulnerabilities,
poor quality or inconsistent formats in the data provided
by NVD significantly impact the performance of VULTURE.
Furthermore, VULTURE utilizes LLM to capture vulnerable
elements for patch identification, which makes VULTURE
highly dependent on the performance of LLM. Although LLM
performs well generally when processing natural language
contexts, manual verification might still be necessary to ensure
the accuracy of patch mapping. Otherwise, the performance of
the vulnerability detection can be negatively affected.

Similarity Comparison Limitation. Although VULTURE
avoids using function or line matching to identify custom
reuses, the employed LSH comparison can still bring inac-
curacies when processing custom reuses that involve extensive
modifications. The settings of similarity thresholds THhash

need to be adjusted to match various databases and accommo-
date different application scenarios.

Dataflow Restrictions in Chunk-based Analysis. As VUL-
TURE generates chunks by analyzing code diff and the in-
volved variables, it may cause incomplete data flows within
chunks, leading to certain information loss. Consequently,
VULTURE performs poorly when analyzing target programs
with extensive code modifications. In addition, the accuracy
of chunk generation also depends on the recognition results
of vulnerable elements extracted from each CVE description.
Correspondingly, chunk-based analysis is also affected the
capability of LLM in processing natural language descriptions.

VI. RELATED WORK

Sections A, B, and C present the related work on TPL
Reuse Detection, Security Patch Collection, and TPL Vulnera-
bility Detection, respectively.

A. TPL Reuse Detection

TPL reuse detection is an essential task aimed at iden-
tifying the TPLs that software relies on, thereby facilitating
comprehensive software maintenance and management [32].
Several detection approaches [14], [23], [27], [30], [33], [37],
[44], [48], [49], [58] targeting distinct platforms have been
proposed.

TPL reuse tends to introduce similar or even identical code
segments from TPL into software, based on this, some studies
proposed keyword token-based code reuse detection. Sourcer-
erCC [37] leveraged token-based detection, which matches
similar blocks using a bag-of-tokens-based strategy. Further,
CCAligner [44] introduced the concept of a code window
and additionally considered edit distance to detect large-gap
code reuse. However, token-based methods possessed poor

13



performance in detecting customized TPL reuse, and also
cannot handle the issue of nested TPLs that interactive code
segments. Targeting the above issues, function-level code reuse
detection schemes are developed. Woo et al. [48] proposed
Centris to match unique parts of TPLs by hashing functions
and eliminate duplicated code to extract function features.
Similarly, Wu et al. [49] developed OSSFP which focuses
on identifying core functions. However, Jiang et al. [27]
pointed out that in practical deployment, Centris still exhibits
poor performance in cases of TPL nesting. To address this,
TPLite [27] was developed which introduced function birth
time and the directory they locate in to build a dependency
graph and analyze the nesting relationships.

Nevertheless, the aforementioned methods require prior
analysis of dependencies between TPLs before detection,
which means the candidate TPL database cannot be eas-
ily expanded. Adding any new TPL necessitates reanalyzing
all dependencies — an extremely time-consuming process.
Therefore, as TPL pool and software complexity increasingly
develop, TPL reuse detection tools must be maintainable,
which is compatible in VULTURE.

B. Security Patch Collection

To collect security patches, existing solutions include re-
trieving patch information from vulnerability maintenance plat-
forms [15], [46], [52] and mapping GitHub commits related to
vulnerabilities from GitHub repositories [20], [38], [41], [45].
Some studies [15], [46], retrieved patch links by accessing
the CVE/NVD websites and extracting the “Hyperlink” field.
However, due to the untimely updates of CVE/NVD, the
number of patches collected through this method is quite
limited. Distinctively, Tracer [52] collected security patches
from multiple known sources, such as Debian and Red Hat,
together with CVE/NVD. However, the issue of untimely
updates is prevalent across all the platforms.

To address the aforementioned issues, other works [20],
[38], [41], [45], pursued an effort to identify patches from
GitHub commits. Tan et al. [41] introduced PatchScout, which
analyzed the correlation between vulnerability information
and GitHub commits through a ranking strategy. Similarly,
[20], [38], [45] also developed ranking-based methods, in-
corporating machine learning and deep learning models (e.g.,
XGBoost [17], CNN [29], CodeBERT [22]) to extract features.
However, ranking-based solutions cannot precisely map patch
commits, as depicted in the studies, highly recall rates can
only be achieved in Top-N (e.g., Top-5) scenarios, which ne-
cessitates substantial manual efforts for verification. Moreover,
these schemes cannot cope with the absence of patch commits
for some CVEs. If the CPE provided on CVE/NVD is wrong
or the patch is just released by other channels, false alarms
would be returned with recognizing commits possessing some
degree of similarity.

Differently, VULTURE filters candidate commits based on
affected code elements, ensuring the exclusion of non-patch
commits; beyond that, VULTURE leverages LLM to logically
determine the actual patch commits, effectively addressing the
defects of existing solutions.

C. TPL Vulnerability Detection

TPL vulnerability detection primarily relies on TPL reuse
detection, associated with TPL vulnerability analysis. ReDe-
Bug [26] employed a token-based approach for detecting
reused vulnerable code through token-level similarity com-
parison. Similarly, Kim et al. [28] proposed a high-efficiency
TPL vulnerability detection strategy VUDDY based on func-
tion comparison, with constructing hash-based function finger-
prints. Zhang et al. [57] designed FIBER, leveraging subgraph
matching to trace the propagation of patches. However, these
methods struggle to detect vulnerabilities in cases of complex
custom TPL reuse, limiting their practicality in real-world
software. To address the above issues, Xiao et al. [51] pro-
posed MVP to extract coarse-grained semantic information for
identifying modified vulnerable code clones. Woo et al. [47]
introduced Movery, which constructs function fingerprints
towards core vulnerability features based on vulnerability-
specific code and patch lines. Beyond that, V1SCAN [46]
further extracted patched code lines from vulnerability patches
and, when detecting TPL vulnerabilities, further reduced false
alarms by comparing patch lines. Nevertheless, these meth-
ods still exhibit limitations, resulting in false positives in
complicated custom reuse. In detail, Movery fails to deal
with the reused vulnerable code that has been patched; while
V1SCAN solely relies on counting patch lines, instead of patch
contents, which is nearly tantamount to random judgment
when handling some real-world software. Additionally, some
studies focus on the analysis of TPL vulnerabilities in IoT
firmware [58], [59], mobile software [19], [33], [50], [55]
and web applications [39], offering solutions tailored to other
platforms and various programming languages.

VULTURE employs static analysis to convert code to
chunks based on vulnerability features. Compared to existing
approaches, VULTURE can detect defects introduced by custom
TPL reuse and analyze whether custom patch exists. Addition-
ally, VULTURE’s TPL database is maintainable, allowing it to
adapt to the evolving software supply chain environment, a
capability that existing solutions lack.

VII. CONCLUSION

This study reveals that achieving accurate software supply
chain security detection requires a comprehensive toolchain.
We introduced VULTURE, which employs a combination of
database construction, security patch collection, TPL reuse
detection, and library vulnerability detection. Through the
construction of a comprehensive database and advanced al-
gorithms, VULTURE minimizes false alarms and improves
detection efficiency. Evaluation shows that VULTURE signifi-
cantly outperforms state-of-the-art tools, including commercial
solutions. Despite some limitations, VULTURE proves to be
effective in real-world scenarios, offering developers a robust
tool to mitigate risks associated with TPL reuses.

14



REFERENCES

[1] “awesome-android-libraries,” accessed: 2024-06-03. [Online]. Avail-
able: https://github.com/wasabeef/awesome-android-libraries

[2] “Cocoamqtt,” accessed: 2024-06-03. [Online]. Available: https://github.
com/emqx/CocoaMQTT

[3] “coremqtt,” accessed: 2024-06-03. [Online]. Avail-
able: https://freertos.org/Documentation/api-ref/coreMQTT/docs/
doxygen/output/html/index.html

[4] “curl cve doc,” accessed: 2024-06-03. [Online]. Available: https:
//curl.se/docs/security.html

[5] “Cve,” accessed: 2024-06-03. [Online]. Available: https://cve.mitre.org/
[6] “Cve-2024-2398,” accessed: 2024-06-03. [Online]. Available: https:

//nvd.nist.gov/vuln/detail/CVE-2024-2398
[7] “ffmpeg security,” accessed: 2024-06-03. [Online]. Available: https:

//ffmpeg.org/security.html
[8] “Nvd,” accessed: 2024-06-03. [Online]. Available: https://www.nist.gov/
[9] “openwrt,” accessed: 2024-06-03. [Online]. Available: https://openwrt.

org/packages/index/libraries
[10] “paho.mqtt.android.” [Online]. Available: https://github.com/eclipse/

paho.mqtt.android
[11] “paho.mqtt.embedded-c,” accessed: 2024-06-03. [Online]. Available:

https://github.com/eclipse/paho.mqtt.embedded-c
[12] “Snyk vulnerability database,” accessed: 2024-06-03. [Online].

Available: https://security.snyk.io/
[13] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,

D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[14] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detec-
tion in android and its security applications,” in Proceedings of the 23rd
ACM SIGSAC conference on computer and communications security
(CCS), 2016, pp. 356–367.

[15] G. Bhandari, A. Naseer, and L. Moonen, “Cvefixes: Automated col-
lection of vulnerabilities and their fixes from open-source software,” in
Proceedings of the 17th International Conference on Predictive Models
and Data Analytics in Software Engineering (PROMISE), 2021, pp.
30–39.

[16] I. Chang, K. Sotiraki, W. Chen, M. Kantarcioglu, and R. Popa, “Holmes:
Efficient distribution testing for secure collaborative learning,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 4823–
4840.

[17] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 2016, pp. 785–794.

[18] C. Dong, S. Li, S. Yang, Y. Xiao, Y. Wang, H. Li, Z. Li, and L. Sun,
“Libvdiff: Library version difference guided oss version identification
in binaries,” in Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering (ICSE), 2024, pp. 1–12.

[19] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying open-
source license violation and 1-day security risk at large scale,” in
Proceedings of the 24th ACM SIGSAC Conference on computer and
communications security (CCS), 2017, pp. 2169–2185.

[20] T. Dunlap, E. Lin, W. Enck, and B. Reaves, “Vfcfinder: Pairing
security advisories and patches,” in Proceedings of the ACM 19th ASIA
Conference on Computer and Communications Security (AsiaCCS),
2024.

[21] Endor Labs, “State of dependency management,” 2023, accessed:
2024-07-09. [Online]. Available: https://www.endorlabs.com/learn/
state-of-dependency-management

[22] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the ACL Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020, pp. 1536–
1547.

[23] J. Guo, M. Zheng, Y. Zhou, H. Wang, L. Wu, X. Luo, and K. Ren,
“ilibscope: Reliable third-party library detection for ios mobile apps,”
arXiv preprint arXiv:2207.01837, 2022.

[24] Y. He, Y. Wang, S. Zhu, W. Wang, Y. Zhang, Q. Li, and A. Yu,
“Automatically identifying cve affected versions with patches and devel-

oper logs,” IEEE Transactions on Dependable and Secure Computing,
vol. 21, no. 2, pp. 905–919, 2024.

[25] O. Jafari, P. Maurya, P. Nagarkar, K. M. Islam, and C. Crushev, “A
survey on locality sensitive hashing algorithms and their applications,”
arXiv preprint arXiv:2102.08942, 2021.

[26] J. Jang, A. Agrawal, and D. Brumley, “Redebug: Finding unpatched
code clones in entire os distributions,” in IEEE 33rd Symposium on
Security and Privacy (S&P), 2012, pp. 48–62.

[27] L. Jiang, H. Yuan, Q. Tang, S. Nie, S. Wu, and Y. Zhang, “Third-party
library dependency for large-scale sca in the c/c++ ecosystem: How
far are we?” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2023, pp. 1383–
1395.

[28] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in IEEE 38th Symposium on Security
and Privacy (S&P), 2017, pp. 595–614.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[30] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo,
“Libd: Scalable and precise third-party library detection in android
markets,” in IEEE/ACM 39th International Conference on Software
Engineering (ICSE), 2017, pp. 335–346.

[31] S. Li, Y. Wang, C. Dong, S. Yang, H. Li, H. Sun, Z. Lang, Z. Chen,
W. Wang, H. Zhu et al., “Libam: An area matching framework for de-
tecting third-party libraries in binaries,” ACM Transactions on Software
Engineering and Methodology, vol. 33, no. 2, pp. 1–35, 2023.

[32] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “Déjàvu: A map of code duplicates on github,” in
Proceedings of the ACM on Programming Languages (OOPSLA), vol. 1,
2017, pp. 1–28.

[33] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and accurate
detection of third-party libraries in android apps,” in Proceedings of
the 38th International Conference on Software Engineering Companion
(ICSE-Companion), 2016, pp. 653–656.

[34] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu,
“Using of jaccard coefficient for keywords similarity,” in Proceedings of
the International Multiconference of Engineers and Computer Scientists
(IMECS), vol. 1, no. 6, 2013, pp. 380–384.

[35] Progress, “MOVEit Transfer Critical Vulnerability
CVE-2023-35036,” 2023, accessed: 2024-07-09.
[Online]. Available: https://community.progress.com/s/article/
MOVEit-Transfer-Critical-Vulnerability-CVE-2023-35036-June-9-2023

[36] A. Sabetta, S. E. Ponta, R. C. Lozoya, M. Bezzi, T. Sacchetti, M. Greco,
G. Balogh, P. Hegedűs, R. Ferenc, R. Paramitha et al., “Known
vulnerabilities of open source projects: Where are the fixes?” IEEE
Security & Privacy, 2024.

[37] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering (ICSE),
2016, pp. 1157–1168.

[38] K. Shen, Y. Zhang, L. Bao, Z. Wan, Z. Li, and M. Wu, “Patchmatch:
A tool for locating patches of open source project vulnerabilities,” in
IEEE/ACM 45th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), 2023, pp. 175–179.

[39] Y. Shi, Y. Zhang, T. Bai, L. Zhang, X. Tan, and M. Yang, “Recurscan:
Detecting recurring vulnerabilities in php web applications,” in Pro-
ceedings of the ACM on Web Conference 2024, 2024, pp. 1746–1755.

[40] Z. Shi, N. Matyunin, K. Graffi, and D. Starobinski, “Uncovering cwe-
cve-cpe relations with threat knowledge graphs,” ACM Transactions on
Privacy and Security, vol. 27, no. 1, pp. 1–26, 2024.

[41] X. Tan, Y. Zhang, C. Mi, J. Cao, K. Sun, Y. Lin, and M. Yang, “Locating
the security patches for disclosed oss vulnerabilities with vulnerability-
commit correlation ranking,” in Proceedings of the 28th ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2021,
pp. 3282–3299.

[42] W. Tang, D. Chen, and P. Luo, “Bcfinder: A lightweight and platform-
independent tool to find third-party components in binaries,” in 25th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2018,
pp. 288–297.

15

https://github.com/wasabeef/awesome-android-libraries
https://github.com/emqx/CocoaMQTT
https://github.com/emqx/CocoaMQTT
https://freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html
https://freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html
https://curl.se/docs/security.html
https://curl.se/docs/security.html
https://cve.mitre.org/
https://nvd.nist.gov/vuln/detail/CVE-2024-2398
https://nvd.nist.gov/vuln/detail/CVE-2024-2398
https://ffmpeg.org/security.html
https://ffmpeg.org/security.html
https://www.nist.gov/
https://openwrt.org/packages/index/libraries
https://openwrt.org/packages/index/libraries
https://github.com/eclipse/paho.mqtt.android
https://github.com/eclipse/paho.mqtt.android
https://github.com/eclipse/paho.mqtt.embedded-c
https://security.snyk.io/
https://www.endorlabs.com/learn/state-of-dependency-management
https://www.endorlabs.com/learn/state-of-dependency-management
https://community.progress.com/s/article/MOVEit-Transfer-Critical-Vulnerability-CVE-2023-35036-June-9-2023
https://community.progress.com/s/article/MOVEit-Transfer-Critical-Vulnerability-CVE-2023-35036-June-9-2023


[43] W. Tang, Z. Xu, C. Liu, J. Wu, S. Yang, Y. Li, P. Luo, and Y. Liu,
“Towards understanding third-party library dependency in c/c++ ecosys-
tem,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2022, pp. 1–12.

[44] P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, “Ccaligner: A token
based large-gap clone detector,” in Proceedings of the 40th International
Conference on Software Engineering (ICSE), 2018, pp. 1066–1077.

[45] S. Wang, Y. Zhang, L. Bao, X. Xia, and M. Wu, “Vcmatch: A ranking-
based approach for automatic security patches localization for oss
vulnerabilities,” in IEEE 29th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2022, pp. 589–600.

[46] S. Woo, E. Choi, H. Lee, and H. Oh, “V1scan: Discovering 1-day
vulnerabilities in reused c/c++ open-source software components using
code classification techniques,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 6541–6556.

[47] S. Woo, H. Hong, E. Choi, and H. Lee, “Movery: A precise approach for
modified vulnerable code clone discovery from modified open-source
software components,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 3037–3053.

[48] S. Woo, S. Park, S. Kim, H. Lee, and H. Oh, “Centris: A precise and
scalable approach for identifying modified open-source software reuse,”
in IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 860–872.

[49] J. Wu, Z. Xu, W. Tang, L. Zhang, Y. Wu, C. Liu, K. Sun, L. Zhao,
and Y. Liu, “Ossfp: Precise and scalable c/c++ third-party library de-
tection using fingerprinting functions,” in IEEE/ACM 45th International
Conference on Software Engineering (ICSE), 2023, pp. 270–282.

[50] Y. Wu, C. Sun, D. Zeng, G. Tan, S. Ma, and P. Wang, “Libscan: Towards
more precise third-party library identification for android applications,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
3385–3402.

[51] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu, Y. Liu,
W. Huo, W. Zou, and W. Shi, “MVP: Detecting vulnerabilities using
Patch-Enhanced vulnerability signatures,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1165–1182.

[52] C. Xu, B. Chen, C. Lu, K. Huang, X. Peng, and Y. Liu, “Tracking
patches for open source software vvlnerabilities,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2022, pp. 860–871.

[53] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proceedings of the 24th ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2017, pp. 363–376.

[54] J. Zeng, D. Han, Y. Zhu, Y. Wang, and F. Weng, “A survey of third-
party library security research in application software,” arXiv preprint
arXiv:2404.17955, 2024.

[55] X. Zhan, L. Fan, S. Chen, F. We, T. Liu, X. Luo, and Y. Liu, “Atvhunter:
Reliable version detection of third-party libraries for vulnerability
identification in android applications,” in IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 1695–1707.

[56] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo,
and Y. Liu, “Automated third-party library detection for android ap-
plications: Are we there yet?” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2020, pp. 919–930.

[57] H. Zhang and Z. Qian, “Precise and accurate patch presence test for
binaries,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 887–902.

[58] B. Zhao, S. Ji, J. Xu, Y. Tian, Q. Wei, Q. Wang, C. Lyu, X. Zhang,
C. Lin, J. Wu et al., “A large-scale empirical analysis of the vul-
nerabilities introduced by third-party components in iot firmware,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), 2022, pp. 442–454.

[59] B. Zhao, S. Ji, J. Xu, Y. Tian, Q. Wei, Q. Wang, C. Lyu, X. Zhang,
C. Lin, J. Wu et al., “One bad apple spoils the barrel: Understanding
the security risks introduced by third-party components in iot firmware,”
IEEE Transactions on Dependable and Secure Computing, 2023.

[60] B. Zhao, S. Ji, X. Zhang, Y. Tian, Q. Wang, Y. Pu, C. Lyu, and
R. Beyah, “Uvscan: Detecting third-party component usage violations in

iot firmware,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 3421–3438.

APPENDIX

A. Appendix A

In this section, we present the complete process used by
VULTURE to identify the patch commit for a given vulnera-
bility, using CVE-2013-4080 as an instance.

The CVE/NVD provides a description for CVE-2013-
4080: “The dissect r3 upstreamcommand queryconfig func-
tion in epan/dissectors/packet-assa r3.c in the Assa Abloy R3
dissector in Wireshark 1.8.x before 1.8.8 does not properly
handle a zero-length item, which allows remote attackers to
cause a denial of service (infinite loop, and CPU and memory
consumption) via a crafted packet”. The mapping process is
detailed as follows:

1) LLM-based description parsing.

VULTURE analyzes the CVE description to parse vulnera-
ble elements. The parsing results are as follows:

• File: packet-assa r3.c
• Function: dissect r3 upstreamcommand queryconfig
• Variable: None

2) Slice-based commit filtering.

First, VULTURE performs date-specific commit slicing to
pinpoint the date range which contains the patch commit.
According to CVE/NVD, ”wireshark-1.8.7” is the last vul-
nerable version and ”wireshark-1.8.8” is the fixed version,
narrowing the time range to (2013-05-17T16:41:42Z, 2013-06-
07T15:49:07Z). A total of 348 commits fall within this period.

Next, VULTURE divides these commits into 18 slices, each
containing 20 commits (the last slice contains only 8 commits).
It analyzes code changes in each slice by calculating the code
changes between the first and the last commit, marking those
with vulnerable elements as candidate slices. Only the third
slice meets this criterion.

3) Candidate commit selection.

VULTURE sequentially analyzes the 20 commits
within the candidate slice, selecting the commit that
genuinely modifies the vulnerable elements as the
candidate commit. Only the commit with the hash
779d28d39039ada8970c910d8350fc2eb05cf00a is identified
as the candidate commit in this step.

4) LLM-based patch commit mapping.

By combining the CVE description with the candi-
date commit, VULTURE employs feature engineering to in-
voke an LLM (GPT-4.0) for analyzing whether the can-
didate commit serves as the patch for the vulnerabil-
ity. Finally, VULTURE successfully identifies the patch
commit (779d28d39039ada8970c910d8350fc2eb05cf00a) for
CVE-2013-4080.
B. Appendix B

The details of targeted projects used in the simulation are
listed in Table IX. The ”Stars” column shows the number of
stars on GitHub, the ”Lines” column indicates the number of

16



TABLE IX: Target programs details

Target Program Stars Lines Version

AliOS-Things 4.5K 4.62M a99f207
LiteOS 4.8K 1.17M 2f8fdf9
Tasmota 21.4K 1.59M 4aa2da3
TizenRT 0.5K 2.16M db112db
kamailio 2.1K 1.16M 999d0c6
mbed-os 4.6K 8.64M c7ea9c1
openthread 3.4K 451K 2408c89
Sming 1.4K 32.33M 895535e
TDengine 22.8K 774K 8703373
zephyr 9.7K 2.18M 2314a2c

lines of C/C++ code, and the ”Version” column contains the
commit hash for each program at the time of access.

17


	Introduction
	Background
	Third-party Library Reuse
	CVE and Commit Analysis

	Overview
	Vulture
	TPLFilter
	TPL Selection
	Component Segment Construction
	Vulnerability Segment Construction

	TPL Reuse Identification
	Candidate Library Detection
	Identification Optimization

	1-day Vulnerability Detection
	Version-based analysis
	Chunk-based analysis


	Experiment
	Experiment Setup
	Database Evaluation
	Component Segment Evaluation
	Vulnerability Segment Evaluation

	Benchmark Vulnerability Detection
	Reuse and Vulnerability Detection In the Wild
	TPL reuse detection
	1-day vulnerability detection
	Time cost

	Limitation

	Related Work
	TPL Reuse Detection
	Security Patch Collection
	TPL Vulnerability Detection

	Conclusion
	References
	Appendix
	Appendix A
	Appendix B


