2012 IEEE International Conference on Information Science and Technology

Wuhan, Hubei, China; March 23-25, 2012

PyXhon: Dynamic Detection of Security Vulnerabilities in Python

Ming Sun, Dawu Gu, Juanru Li, and Bailan Li

Abstract—Python programming language supports third-
party software extensions which are important for software
prototype development. This paper presents a security enhance-
ment plug-in PyXhon, that detects the security vulnerabilities
and privacy leaks from third-party extensions. We propose the
Function Oriented Analysis, which developers use to monitor
all function-call procedures; dynamic Byte Instruction Trace
Analysis, which infers the behaviors of importing modules and
accessing private DLL; and security policies, which provides
strategies to accept or reject extensions. These security mech-
anisms do not require Python language features so as to be
completely transparent to Python applications. PyXhon could
generate a violation report, which helps developers quickly
locate and analyze suspect code of extensions. To demonstrate
the usefulness of PyXhon, we have analyzed more than 30
popular Python third-party extensions. Qur experiments show
that, with the violations of some extensions, most third-party
code respect the resources privilege.

I. INTRODUCTION

CRIPTING languages are more conventional program-

ming languages and are widely used in text processing,
scientific computing and web development. Scripting lan-
guages usually allow users to extend the functionality via
third-party specific software packages and take advantage of
the sufficient third-party extensions. However, the security
research about those third-party extensions has not been well
considered in both academic and engineering fields.

Third-party code brings more difficulties of ensuring the
software security. Even if third-party extensions are signed
and published by the trusted groups, it is likely that there
are more security issues and security vulnerabilities than
the well-considered underlying platform. Many third-party
extensions are not developed and tested sufficiently because
of no-commercial delivery or limited human resource; they
may also be ignorant of the implicit features in different
platforms. In addition, third-party extensions usually collect
the personal information in order to count and analyze users’
profiles.

There are many measures and policies to guard against the
third-party malicious code in many programming languages,
such as Java and Flex[2]. Java security model is based
on customizable sandbox in which Java programs can run
safely without potential risk to system, while Flex acquires
the system permission before accessing sensitive resources.

This work was supported by China Major National S&T Program
(2012ZX03002011) and Shanghai Municipal Commission of Economy and
Information Major High-Tech Program.

Ming Sun, Dawu Gu, Juanru Li and Bailan Li are with Department
of Computer Science and Engineering of Shanghai Jiao Tong University,
Shanghai, China (email: {sterling.sun, dwgu, jarod, 1bl} @sjtu.edu.cn).

978-1-4577-0345-4/12/$26.00 ©2012 IEEE

However, Flex will make the resource accessible regardless
of how programs manipulate resources after permissions are
granted.

Python[1] is an interpreted high-level programming lan-
guage whose design emphasizes on code readability and
functional extensibility. Python has definite standard li-
braries, usually cited as the basic features of Python lan-
guage, providing the common tools and algorithms. The pro-
gramming philosophy of Python is to use appropriate third-
party extensions instead of implementing the functionality
by developers themselves. Those internal functions provide
developers sufficient flexible tricks while it is convenient for
adversaries to download the malicious code from Internet
and execute them immediately. It is difficult for existing
Python security projects to capture whole potential security
vulnerabilities and privacy risks in third-party extensions.
Indeed, novel Python analysis approach is necessary to trace
the complete information flow and evaluate the dynamic
behavior before adopting the extensions.

Currently Python has many extensible and dynamic fea-
tures, such as internal function execfile() and exec(), which
bring Python users numerous potential risks. At the same
time, Python lacks mechanisms for controlling access to
resources so that it is hard to control the Python execution
within sandbox like Flex. Then malicious code can access the
operating system APIs by importing internal ctypes library,
which may harm the availability and confidentiality of sys-
tem. It is difficult to guide system away from leaking personal
information, but in scenarios, the unexpect behaviors must be
concerned by users who maintain the security of confidential
data.

This paper proposes PyXhon, a prototype security en-
hancement of Python interpreter to reveal the malicious
software behaviors. PyXhon does not prevent third-party
code execution by restricting their access to private resources
or removing specified modules in Python language, which
indeed change Python language characteristics. The primary
goal of PyXhon is to evaluate third-party extensions by
monitoring the function-call procedures and analyzing byte
instructions traces so as to figure out the whole malicious
behaviors and potential security risks.

II. RELATED WORKS

This paper’s focus is the intersection of third-party ex-
tensions and Python interpreter. There are several existing
security enhancement approaches for scripting language,
which is either to restrict what modules are available in

Python interpreter or to disallow the tainted data accessing
the information flow.

InvisiType[3] provides object-oriented security check
based on the fundamental hierarchies in Python object-
oriented paradigm. Solutions in InvisiType are to encapsulate
the safety checks in an external Python library, which de-
velopers must introduce to gain fine control over third-party
extensions as security policies. Taint analysis is introduced
to enhance the Python’s built-in information flow as taint
mode Python library[9]. There are also many other external
libraries[7][14] used to evaluate the third-party extensions
security. Most of libraries require developers to follow their
criteria and policies so that it is difficult to adopt them to
existing projects. Several engineering projects provide the
modified Python interpreter whose dynamic modules with
potential risks are removed, such as GAE[10] and Simple
Interpreter[6]. Those approaches do change the Python lan-
guage features and violate the Python operating mechanisms.
If there are trivial violations in the third-party extensions, it
is impossible to evaluate and exploit third-party extensions
because they cannot be executed anymore without critical
modules. We must employ those functional extensions at
some situations, but those downsizing Python are bound to
let developers down.

There are some static analysis methods[8] to evaluate the
security of third-party extensions. By parsing the Python
source code into abstract syntax trees (ASTs), static analysis
is to verify the potential work flow or forbid accessing
high sensitive internal functions and modules. Unfortunately,
static evaluation approach cannot tackle dynamic features in
Python, like the obfuscated code and the encrypted data.
RESIN[4] is a PHP runtime that helps prevent security
vulnerabilities by allowing developers to specify application-
level data flow assertion. RESIN’s idea is effective for Web
application while it is not sufficient for the evaluation of
third-party extensions.

Our work is quite different with traditional researches
about Python safety execution which is mainly concerned
with controlling access to the Python execution. PyXhon is
to evaluate whole potential security issues in third-party ex-
tensions by monitoring the specified function-call procedures
and module-importing actions in Python interpreter, which is
completely transparent to Python applications and provides
accurate analysis without reading source code line by line.

III. THREAT MODEL

The purpose of the paper under discussion is to handle
a threat model where the third-party Python extensions are
running in the context of python interpreter without consid-
eration security of external Dynamic Link Library (DLL).
Python is an open source programming language then it is
easy to parse source code to ASTs and analyze the control
flow according to semantics. Adversary can also have a
thorough understanding about Python language and make
use of tricky mechanisms like ctypes module and obfuscation
technology to protect their malicious code.

We should suppose that adversary has sufficient knowledge
about the current analyzing technologies and good under-
standing of the popular security-enhancement projects. It is
also convenient for adversary to detect whether there are
well-known security libraries in interpreter context. With
those kinds of smart-adversary considered, the best way to
evaluate third-party code is to dynamically monitor how the
interpreter works, which is totally transparent to high-level
programming language. Any code-protection scheme based
on Python language cannot infer the difference between
original interpreter and the one with PyXhon.

PyXhon assumes there are not malicious code in Python
internal libraries, and does not prevent an adversary from
compromising the underlying middleware and Operating
System. We also do not consider the situation that OS may
restrict the resource accessing upon individual processes
as system security policies. The most primitive mean of
evaluating extensions is to line-by-line analyze source code,
which is bound to be ineffective and costly. Automatic
analyzing solutions are urgent to be implemented to benefit
developers. PyXhon is one kind of those solutions to evaluate
the behaviors of third-party extensions.

IV. DESIGN

Many projects described in Section 2 can tackle the third-
party executions by forbidding accessing specified resources
and blocking the suspect code, but the design of such
Python library cannot be transparent to the third-party code
because they may pollute the Python context. Instead of
preventing the violation code execution, our goal is to total
transparently monitor the behaviors of third-party code and
evaluate their vulnerabilities and privacy risks. This section
describes how PyXhon addresses the malicious and privacy
risks in third-party, and presents Function Oriented Analysis
(FOA) approach, dynamic Byte Instruction Trace Analysis
(BITA) approach and PyXhon security policy.

A. Overview

To illustrate the high-level design of PyXhon and what
developers must to do before evaluating third-party exten-
sions, this part describes the foundational knowledge about
how Python Interpreter works, especially internal different
function-call procedure and dynamic byte instruction trace.
And it is essential to define the policies that tell the develop-
ers which function-call does not satisfy security policies and
how byte instruction flow is unauthorized. There are three
components in PyXhon plug-in, which are function oriented
analysis module, dynamic byte instruction analysis module
and policy configuration module. The structure of PyXhon
is shown in Figure 1.

B. Function Oriented Analysis

PyXhon aims to monitor all function-call procedures in
Python interpreter, which can reveal the reappearance of
program control flow and data flow. Generally speaking, there
are two kinds of function paradigms, the procedure function
and object-oriented method.

462

Application

Offline
(Py Code) G‘rivate DLL and PY[D Analysis
—
Third-party FOR
Internal Libraries
Modules Libraries
Byte

Instruction

Trace
Analysis

Policy
Defination

Architecture of PyXhon Plug-in

PyXhon Plug-in

o . Internal
Build-in Functions DLL and PYD

Operating System

Fig. 1.

Python interpreter has a number of procedure functions
built into it that are always available, such as open(),
execfile(). To facilitate developers and accelerate software
development, those built-in functions play important role.
However, built-in functions have advanced features like exec-
file() which can compile and execute text files from Internet
or other untrusted source. Abuse of those functions will bring
the potential system risk and privacy leak, including deleting
critical files, destroying the system availability and sending
confidential information via Internet.

Python also supports object-oriented paradigm which wrap
up methods and data with standard class. It is common
practice to separate the source code into different modules,
and Python language follows this practice with many utility
internal libraries, most of which are embracing the object-
oriented paradigm. The member function definitions inside a
class normally have a peculiar form of argument list, dictated
by the calling conventions of methods. Python interpreter
can easily distinguish the member function call and the
relative argument list because it is by the name of member
function that interpreter can find the corresponding function
object in context. Like procedural function, member function
of object-oriented programming can also identify execution
functionality by different function names and various argu-
ment lists.

PyXhon provides novel FOA approach, which can discover
the critical function-call in Python programs transparently.
FOA tracks both internal and external functions and relative
argument list which determines the expected consequences.
PyXhon will focus on and record those specific and critical
functions, depending on the policy configuration. If develop-
ers want to check whether third-party extensions will send
private data to untrusted server, they can monitor the send()
function in socket.py module. If developers want to verify
whether the Python code has accessed system files, it is
convenient to monitor the built-in function execfile(), open()
and file(), because Python developers will not overwrite those
internal key functions.

C. Dynamic Byte Instruction Trace Analysis

When developers invoke the Python interpreter, the source
code is scanned for lexical analysis which transforms the

Python Interpreter

APP Security Policy

+ Third-Party Libs
Analyzing
el
g| Fu ':’" = Function
%n %, 1 Procedure
i,
N]

Violation Report

Call Access
Built-in Internal
Functions Modules

Fig. 2.

PyXhon Function Oriented Analysis Workflow

plain text into tokens. Then these tokens are parsed into
ASTs representing the logical structure of source code as
the Python grammar description. The code generation phase
of compilation take the ASTs generated into PyCodeObject
which are independent units of executable code, containing
all the byte code and relative data structure for Python
interpreter. The execution of byte instruction is handled in
the Python interpreter, translating byte instruction to machine
code with manipulating the Python context stack.

The trace of Python byte instructions and operands could
represent all characteristics of corresponding Python source
code, because this trace contains all the data manipulation
process and relative values. The byte instructions can provide
developers some important clues, such as byte instruction
CALL_FUNCTION to destine the function-call procedure,
IMPORT_FROM to push attributes from one module onto the
stack. However, it is difficult to infer complete appearance
of Python source from byte instruction flow, because low-
level instructions are not sufficient and hard to reappear the
runtime Python stack.

There are many researches about the dynamic binary
flow[13] on X86 architecture, include detecting the sensitive
data pattern of the instructions of cryptographic primitives,
secret keys and system call procedures. This analyzing idea
can be applied to Python byte instruction analysis, detecting
the resource acquisition and data operation. In order to im-
prove the efficiency and flexibility of BITA, PyXhon intends
to offline analyze the byte instruction trace and associated
operation data flow. Currently, PyXhon only presents the
analysis for importing libraries and accessing DLL functions.
Other further inferences from dynamic byte instruction trace
are not implemented and will be well analyzed in the future.

D. Security Policy

Measures used today to prevent against the malicious code
from third-party extensions are very crude, which only forbid
accessing the identified functions and isolate the certain
system resources. Those rude approaches cannot objectively
evaluate third-party extensions because in particular situa-
tions it is reasonable to access the critical built-in functions

463

l-',3|.b Compile Pyc
Source g Byte
File Code

Byte Code Objects

Trace Record
& Analyzing

Python Bytecode
Interpreter

Avuxiliarg FO&

Evaluation
Report

PyXhon Dynamic Byte Instruction Trace Analysis

DLL and PYD
Execution

CPU Execution

Fig. 3.

and system services. PyXhon provides sophisticated Python
third-party security policies, help developers to employ user-
desired features in extension libraries, under the promise of
fine-grained security policies.

By FOA and BITA, PyXhon could recognize the whole
function-call procedures and module importing operations.
It is necessary to provide the criterion to distinguish the
well-performance third-party code against the malicious one.
We propose a precious policy which states that third-party
code are not allowed to access the independent resources.
In other words, a third-party extension for text processing is
unreasonable to import the socket module, otherwise PyXhon
security policy will report this violation. Generally, we can
avoid the abuse of system resources by function categories
policy, which are based on the different major functionality of
built-in functions and internal libraries. There are five basic
functionality categories according to our policy definition in
Table 1.

Our strategies are totally different from the sandbox secu-
rity evaluation approach and restricted execution mode, but to
provide the independent runtime environment for third-party
extensions. As monitoring how interpreter works, PyXhon
does not depend on any Python language feature. This allows
developers to customize precious security policies, to monitor
procedural functions in any module or member functions in
all classes. However, PyXhon cannot tackle the malicious
DLL in the Python interpreter level, it is another security
topic about the binary DLL reverse engineering.

V. IMPLEMENTATION

We have implemented PyXhon prototype in CPython run-
time, version 3.1.2, as Python3 has significant difference with
the previous versions, designed more graceful and flexible.
To be flexible and support experimentation, the dynamic Byte
Instruction Trace Analysis module and Evaluation Report
module are written in Python itself. Instead of removing the
particular built-in functions and internal libraries, PyXhon
solution keeps all the features in Python language without
restricting any resources.

PyXhon takes full advantage of the idea of Aspect-
Oriented Programming, adding configurable filter in
function-call aspect and byte instruction dispatching section
in Python interpreter. First, Python prototype stores the
dynamic function information and byte instruction traces in
specified output files, named BytecodeFlow, Functionlnfo
and ImportModule; it is an offline analysis strategy on
behalf of execution efficiency. Second, PyXhon will parse
these data-set and give analysis conclusion according to the
security policies.

To allow developers to customize the security policies, as
described in Section4.4, PyXhon provide the practical con-
figuration file, the interface to change the different policies
and monitor the specified functions. For instance, when eval-
uating a third-party network enforcement library, as Python
wrapper around Twitter API, it is convenient to define the
functionality policy that this extension can accesses Network
Communication Category and other module resources access
are illegal. Furthermore, we can also define the more fine-
grained policies, which only allow extensions access to
particular functions and classes in the Network Communi-
cation Category. In PyXhon prototype, it is important that
developers should define the appropriate policies upon type
and usage of the third-party extension.

VI. EVALUATION

The main criteria for evaluating PyXhon is whether it is
effective at helping developers diagnose the security viola-
tions in third-party extensions. PyXhon could automatically
analyze the critical areas in extensions, which is more
efficient and precious than the manual analysis.

To determine the capability and precision of PyXhon, we
evaluated many wide-used, famous third-party extensions of
Python3 and figured out violations according to our security
policies. Table II summarizes the result of some typical ex-
tensions, showing the extension name, the specified extension
security policies and the violations in extensions. Developers
should review source code in the extension according to
the evaluation report, to determine whether those violations
indeed have security vulnerabilities and privacy leaks.

A. Experimental Results

We have chosen various widely-used Python third-party
extensions[14], latest distribution from the official websites.
There is the precondition that high-level functionality of the
extensions is known to the users. We can easily implement
test programs based on the interface of third-party extensions.
Then PyXhon will evaluate test programs to analyze the
behaviors of adopted third-party extensions.

Some extensions are native Python code while the others
are wrappers of the current services and libraries that are
implemented in another programming language. There are
different policies for native code and wrappers, because
wrappers mostly depend on various private DLL and PYD.
Security policy should be defined according to the func-
tionality of the adopted part in extensions. For instance,
policies of scientific computing extension numpy should

464

TABLE I
CATEGORY OF INTERNAL FUNCTIONS AND MODULES IN PYTHON 3.1.2

Categories Policy

Functions Modules

File Operation

- file, open, execfile

- fileinput, filecmp, linecache, shutil, glob, fnmatch, tempfile,

shelve, marshal, dbm, sqlite3, zlib, gzip, bz2, zipfile, tarrfile,
csv, configparser, metrc, xdrlib, plistlib, io, etc.

Network Communication - N/A - io, socket, _socket, ssl, _ssl, asyncore, asynchat, email,
mailcap, mailbox, webbrower, cgi, wsgiref, urllib, http, ftplib,
poplib, imaplib, nntplib, smtplib, smtnd,socketsever, xmlrpc,
etc.

Local DLL Access - _import__ - ctypes, _ctypes, import

Operating System Service - N/A - ctypes, sys, os, platform, subprocess, ossadiodev, cmd, msilib,

msvert, winreg, winsound, _mis, posix, grp, crypt, termios, tty,
pty, fentl, resource, nis,pwd, spwd, etc.

- eval, exec, execfile,
locals,globals,

_import__

Dynamic Built-in Functions

compile,
memoryview,

- codeop, py-compile, compileall

TABLE II
TYPICAL RESULTS FROM USING PYXHON TO EVALUATE THIRD-PARTY EXTENSIONS

Policy File(F) Network(N) DLL(D) 0S(0) Dy Built-ins(B) Suggestion
Numpy 1.6.0 D-O-B - - Y Y Y Accept
Cx_Freeze 4.2.2 F-O-B Y Violation(1) - Y Y CodeReview
Pyisbn None - Violation(1) - - - CodeReview
Pyro 4.4.6 N-O-B - Y Violation(1) Y - CodeReview
MDP 3.1 FDOP Y - import ctypes Y Y Accept

in Numpy

cremod 1.7 D-O - - Y Y - Accept
xlrd3 0.1.4 F-O Y - - Y - Accept

allow the Local DLL Access, Dynamic Built-in Functions and
Operating System Call(D-O-B), but not allow File Operation
and Network Communication, because it is not reasonable
for numpy to access the file system and network interface.
When unexpected functions appear, there may be a security
violation in third-party code. Then developers could man-
ually check the corresponding source code easily because
of the violation location information, provided by PyXhon.
This approach improves the efficiency and precision of the
security checking, as many investigation works are done by
PyXhon for developers. Finally, developers just need focus
their attention on critical code in extensions.

We demonstrate the capability of PyXhon by evaluating
the different types of Python extensions, which are widely
used in Python software development. The results in Table II
indicate that PyXhon can detect the potential vulnerabilities
quickly even if vulnerabilities hide themselves in obfuscation
code of extensions. For instance, cx_Freeze library is a set
of scripts and modules for freezing Python scripts into
executables, whose major work is to extract the necessary
resources and make them into a package. So it is not
necessary to access the Network Communication and Private
DLL belonging to Python internal resources. PyXhon found
that there is import socket instruction execution and the
socket.gethostname() function-call procedure during execu-
tion. As our security policies, those unexpected importing
and function-call events are violations so that the evaluation
report must provide the locations and arguments information
of the violation. Developers must check the relative source
code of the extension, according to PyXhon evaluation report.
Pyisbn is an extension used to calculate of ISBN checksums,

but it may bring us potential risks because adversaries
could take advantage of the abuse use of email module in
Pyisbn to leak personal information. This suggests that when
developers want to take advantage of one external extension,
they must evaluate the security issues before distributing
applications to customer.

B. Generality and Performance

What make PyXhon unique is that developers could eval-
uate the extensions without consideration the code protection
technologies in third-party code. PyXhon is implemented in
Python interpreter, completely transparent to the Python pro-
gramming language so that it is immune from the language-
based code obfuscation and encryption. The adversary cannot
exploit the vulnerabilities of PyXhon by inserting the mali-
cious code to destroy the security mechanism. The results of
above experiments also show that PyXhon could preciously
demonstrate the behaviors of extensions. The idea of FOA
can also be applied to other scripting languages, such as Perl,
PHP and JavaScript.

Although the main focus of PyXhon is to detect the secu-
rity vulnerability of third-party extensions, developers may
reject this approach if they impose excessive performance
overhead. We also measured the overhead during evaluation,
showing that PyXhon brought about 20% overheads in av-
erage. However, those overhead cannot be brought into the
execution of Python applications, because developers only
use PyXhon in extension evaluation phases.

VII. LIMITATIONS AND FUTURE WORK

PyXhon is not a one-size-fits-all solution to detect the
violation code in the third-party extensions. There are also

465

some limitations in current PyXhon, which we will address
in the future work. First, it is impossible for PyXhon to tackle
the vulnerabilities in private DLL. The adversary could insert
malicious code into its DLL so as to escape the security
check mechanism in Python interpreter. In order to determine
the security of associated DLL, we would like to integrate
the excellent DLL analysis tools into PyXhon, as to be
a complete Python security-enhancement system. Second,
PyXhon have implemented the inference for behaviors of
importing modules and accessing private DLL. Because
dynamic byte instruction traces have sufficient execution
information, indicating the security issues, further research
about traces will continue. Finally, we will improve the
efficiency of PyXhon so that there are no obvious differences
between original interpreter and PyXhon. Then PyXhon
could be a realtime security monitor in Python interpreter, to
tackle unexecuted code of extensions in evaluation phases.

VIII. CONCLUSION

Our approach, PyXhon, employs the novel Function Ori-
ented Analysis and dynamic Byte Instruction Trace Analysis,
can automatically provides developers analysis report to help
detecting the malicious code and privacy risk. PyXhon also
provides the policy configuration interface, so that devel-
opers could apply different security policies as the various
functionality of extensions. Finally, developers could make
their decision by checking the violation code according to
the PyXhon security evaluation report.

We also evaluated the capability of PyXhon by detect-
ing violations in existing Python third-party extensions as
corresponding security policies. Results show that PyXhon
is effective at evaluating the potential vulnerabilities and
privacy risks without consideration of Python code protection
techniques. We hope our ideas will help Python developers
prevent their applications from the risks in third-party exten-
sions.

REFERENCES

[1] Python Documentation. Available: http://www.python.org/doc.

[2] Flex. Available: http://www.adobe.com/products/flex/.

[3] J. Seo and M.S. Lam, “InvisiType: Object-Oriented Security
Policies,” .In 17th Annual Network and Distributed System Security
Symposium, Internet Society (ISOC), 2010.

[4] A. Yip, X. Wang, N. Zeldovich, and M.F. Kaashoek, “ Improving
application security with data flow assertions,” In Proc. of the ACM
Symposium on Operating Systems Principles, 2009.

[5] M. Gaimana, R. Simha, and B. Naraharia, “Privacy-preserving program-

ming using sython. Computers & Security, vol. 26, pp. 130, 2007.

[6] B. Cannon and E. Wohlstadter, Controlling access to resources within the
python interpreter. Available: http://www.cs.ubc.ca/drifty/ papers/
python security.pdf. 2011.

[7] F.D. Tedesco, A. Russo, and D. Sands, “ Implementing erasure policies
using taint analysis,” The I5th Nordic Conf. in Secure IT
Systems,Springer Verlag, 2010.

[8]N. Jovanovic, C. Kruegel, and E. Kirda, “ Pixy: A Static Analysis Tool for
Detecting Web Application Vulnerabilities,” In 2006 IEEE Symposium
on Security and Privacy,. IEEE Computer Society, 2006, pp. 258

[9]1J.J. Conti and A. Russo, “ A taint mode for Python via a library,” NordSec
2010. Selected paper by OWASP AppSec Research. 2010.

[10] Goggle Application Engineering. Available: http://code.google.com/

appengine/ .

[11] A. Petukhov and D. Kozlov, ““ Detecting security vulnerabilities in web
applications using dynamic analysis with penetration testing,” In Proc.
of the Application Security Conference., 2008.

[12] T. Le. Python, Compiler Internals. Available: http://www.shinetech.

com/attachments/108

[13] D. Song, D. Brumley, H. Yin, J. Caballero, 1. Jager, M. G. Kang, Z.
Liang, J. Newsome, P. Poosankam, and P. Saxena, “ BitBlaze: A
newapproach to computer security via binary analysis,” In Proc. of
the4th International Conference on Information Systems Security,
India, 2008.

[14] Python Package Index. Available: http://pypi.python.org/pypi.

[15] D. Kozlov, A. Petukhov., “ Implementation of Tainted Mode approach
to finding security vulnerabilities for Python technology.,” In Proc. Of
Young Researchers’ Colloquium on Software Engineering (SYRCoSE),
2007.

[16] O.Tripp, M.Pistoia, S.J.Fink, M.Sridharan, and O.Weisman, “TAJ:
effective taint analysis of web applications,” In Proc. ACM SIGPLAN
Conference on Programming language Design and Implementation,
ACM Press, 2009.

[17] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Reddi, and K. Hazelwood, “ Pin: Building CustomizedProgram
Analysis Tools with Dynamic Instrumentation,” In Proc. Of the 2005
ACM SIGPLAN conference on Programming language design and
implementation, pages 190. ACM New York, NY, USA, 2005.

466

