
The Achilles’ Heel of OAuth: A Multi-Platform Study of
OAuth-based Authentication

Hui Wang*, Yuanyuan Zhang, Juanru Li, Dawu Gu
Lab of Cryptology and Computer Security

Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai, China

ABSTRACT
Websites and mobile applications today increasingly uti-

lize OAuth for authorization and authentication. Major
companies such as Facebook, Google and Twitter all pro-
vide OAuth services. The usage of OAuth for authoriza-
tion is well documented and has been studied by many re-
searchers. However, little work has been done to specify or
analyze the usage of OAuth for authentication. Given that
many developers have employed OAuth for authentication
on multiple platforms, we believe it is imperative to conduct
a study to understand how developers customize OAuth for
authentication on different platforms.

In this paper, we analyze how popular applications on
the Web, Android and iOS platform authenticate users with
OAuth. Our approach is to dissect the traffic from an attac-
ker’s perspective to recover the authentication mechanisms
employed by the apps and identify exploitable vulnerabi-
lities. The results show that OAuth-based authentication
mechanisms employed by these applications lack sufficient
verification and suffer from many vulnerabilities. Closer exa-
mination reveals that developers have different tendencies to
authenticate users with OAuth on different platforms, and
32.9%, 47.1% and 41.6% of the analyzed mechanisms on the
three platforms are vulnerable. We then categorize the root
causes of these vulnerabilities and make practical recommen-
dations for developers to help design and implement robust
authentication mechanisms with OAuth.

Keywords
OAuth; Single-Sign-On; Authentication

1. INTRODUCTION
OAuth [13] is an open standard for authorization, and

it is quickly becoming the de facto standard for handling
authentication between apps and websites. Today, many
prestigious companies (e.g., Google, Facebook and Twitter)
are using OAuth to manage authentication with their APIs.
They provide OAuth SDKs for different platforms, to help

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or repu-
blish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’16, December 05-09, 2016, Los Angeles, CA, USA
c⃝ 2016 ACM. ISBN 978-1-4503-4771-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2991079.2991105

developers integrate their services. When OAuth is used as
an Single-Sign-On (SSO) scheme, it allows a user to iden-
tify herself to a third-party application (e.g., ESPN), which
we call a relying party (RP), using an identity that is ma-
naged by an identity provider (IdP), without exposing her
passwords (and other credentials). However, the problem
is that OAuth was initially designed for delegating autho-
rization in the web, there exists no specification providing
guidance for developers to authenticate users with OAuth on
different platforms. Even though major IdPs provide servi-
ces based on OAuth to help user authentication, these sche-
mes are not authentication protocols themselves. Given the
fact that failing to authenticate users with OAuth securely
can lead to serious consequences (e.g., user impersonation),
and OAuth has been deployed commercially for authentica-
tion by many websites/applications, it is very imperative to
conduct a study to understand how RPs authenticate users
with OAuth on different platforms.

Single-Sign-On (SSO) schemes have been studied by se-
veral others [5, 8, 21]. Prior research investigated web SSO
protocols such as Open ID, SAML SSO, Facebook Connect,
etc. Unlike OAuth, these protocols were specifically desig-
ned for authentication rather than authorization. The vul-
nerabilities uncovered in these protocols were different from
the ones in OAuth authentication. Meanwhile, how widely
these protocols are deployed is unclear, some of them are
even outdated. For example, Facebook Connect has already
been deprecated and replaced by OAuth 2.0, Google ID is
no longer supported in 2016. For those studies related to
OAuth, Sun et al. concentrated on classical web attacks
involving stealing the user’s access token from an RP [18].
Wang et al. introduced a systematic process for identifying
critical assumptions in SDKs, which led to the identification
of some vulnerabilities [22]. The focus of these researches
was on the process of token exchange, they concerned the
transmission of the tokens, the binding between the token
and the RP, or the binding between the token and the user,
but not the process of identity information exchange. Si-
milar to password authentication, which utilizes the userna-
me/password to authenticate a user, the returned identity
information is the key to identify a user in OAuth authenti-
cation. However, it is unclear how real-world RPs customize
the OAuth protocol to authenticate users.

OAuth authentication mechanisms are built on top of the
existing authorization protocol, but indeed they are not pro-
tocols, they are APIs with proprietary implementations and
public interfaces. In a protocol, the actions different parties
supposed to take are clearly specified, as well as the roles of

167

different parameters in each step. While in OAuth authenti-
cation, which parameters are suitable to be used for authen-
tication and how the authenticators should be transmitted
are unspecified, let alone how RP servers are supposed to ve-
rify the binding between the authenticators and the current
user. It is completely up to the RP how to use the outputs
of OAuth for authentication. Through a successful exploit
of an uncovered flaw in these mechanisms, an attacker can
impersonate a victim on an RP application, or entice a vic-
tim to login to an RP as the attacker in order to steal the
victim’s privacy (e.g., trick the victim to linking his credit
card to the attacker’s account).

To ensure the security of OAuth authentication, we pro-
pose an attacker-guided analysis methodology to further the
understanding of (1) how RPs decide to customize OAuth for
authentication on different platforms, (2) the security and
privacy issues of these customized OAuth-based authenti-
cation mechanisms, and their prevalence on different plat-
forms, (3) the root causes and consequences of RPs’ deci-
sions. First, we utilize an “in-browser”technique to get the
view of the entire OAuth-based authentication transaction
of an RP from a malicious RP attacker’s perspective, inclu-
ding the HTTPS traffic. We pinpoint the critical parame-
ters selected by the RP for authentication in this step, as
well as the communication channel used for authenticator
transmission. What’s more, we perform a differential fuz-
zing test to check whether the RP server verifies the binding
between the authenticator and the current user. Second, we
set up a man-in-the-middle proxy to inspect the authenti-
cation traffic from an active network attacker’s perspective.
Based upon the knowledge obtained in the first step, the me-
chanisms transmitting authenticators in an insecure channel
will be observed. Security of an OAuth-based authentication
mechanism is evaluated in three aspects: a) whether the
authenticators can be used to verified their binding relati-
onship with the current user; b) whether the authenticators
are transmitted under well-protection; c) whether the RP
server verifies the binding between the authenticators and
the current user.

Our study was conducted on 241 popular OAuth-capable
applications, including 79/85/77 apps on the Web, Android
and iOS platform. The focus was to dissect the OAuth-
based authentication mechanisms deployed by RPs on dif-
ferent platforms, and assess the security of these mecha-
nisms. As far as we know, this is the first time an in-
vestigation on OAuth-based authentication mechanism is
conducted on different platforms. Our study reveals that
real-world OAuth-based authentication mechanisms are ex-
tremely diverse, and RPs tend to employ different mecha-
nisms on different platforms. The diversity of the real-world
OAuth-based authentication mechanisms reflects the real is-
sues with OAuth authentication: (1) The usage of OAuth
for authentication is poorly defined and unspecified, (2) RPs
customize OAuth for user authentication without sufficient
verification. Our study shows that 32.9%, 47.1% and 41.6%
of OAuth-based authentication mechanisms implemented in
the tested apps on Web, Android, iOS platforms suffer from
vulnerabilities we uncovered.

The contributions of this paper can be summarized as
follows:

• We show that OAuth-based authentication mechanisms
of many websites and applications lack sufficient veri-
fication, and are vulnerable to many attacks including

user impersonation, client impersonation, enticement
attack and token hijacking.

• We present the first study of OAuth-based authenti-
cation mechanisms on multi-platforms, including Web,
Android, iOS. Our results show that RPs have diffe-
rent tendencies to authenticate users with OAuth on
different platforms, and vulnerabilities exist prevalen-
tly on these platforms.

• We categorize the root causes of our discovered vul-
nerabilities, and develop some practical recommenda-
tions for RPs to help them authenticate users with
OAuth in a secure manner.

2. OAUTH AUTHENTICATION DEMYSTI-
FIED

In this section, we describe a typical example to illustrate
what can go wrong in OAuth authentication. Furthermore,
we pinpoint the key portions in OAuth authentication that
are security critical, most vulnerabilities in OAuth-based
authentication mechanisms relate to theses portions.

2.1 Illustrative Example
When OAuth is used for authentication, the RP needs to

request an access token from the IdP when a user elects to
use SSO to login, and then exchange the token for user’s
identity information to identify him. The OAuth authenti-
cation logic is illustrated in Figure 1. The key part of OAuth
authentication is in Stage 2, i.e., the process of identity in-
formation exchange. However, there exists no specification
providing the details of the authenticator exchange process.
In other words, it is unclear which authenticators are sui-
table for authentication, how the authenticators should be
transmitted, how an RP server is supposed to verify the
authenticity of the authenticators. Without stating these
clearly, RPs may customize OAuth for authentication in an
insecure way.

User RPIdP

Stage 1

Stage 2

Figure 1: OAuth Authentication Logic

A typical misuse is shown in Figure 2. In this case, the RP
utilizes his client to exchange the information between the
RP server and the IdP server. And he uses the user profile
(e.g., user id) and access token as the authenticator. There
are some exploitable vulnerabilities in this mechanism that
allow attackers to masquerade as the user on the RP: (1)
It’s obviously insecure if the authenticators are transmitted
in an unencrypted channel, as has been discussed by many
others [20, 22]. (2) If the authenticators are protected with
HTTPS, a malicious RP attacker (Section 3.2) can intercept
his login traffic to the benign RP in his own browser, and

168

substitute the authenticators with a victim’s to hijack the
victim’s account on the RP. Because a malicious RP can
gather the IdP-managed user id and token of a user on his
own website, as long as he supports the IdP’s SSO service.
(3) An attacker can replay the authentication traffic to im-
personate the victim on the RP.

User RP_SIdPRP_C

Figure 2: Typical Misuse

The problem is related to the authenticator, no mecha-
nism is provided to protect the integrity and the effective-
ness of the authenticators, thus attackers can tamper with
or replay the traffic to hijack users’ accounts. Such a misuse
is fairly common when RPs implement OAuth authentica-
tion on their mobile applications. In our observation, 28.4%
of the OAuth-capable apps in our dataset on the Android
and iOS platform are vulnerable due to this mistake.

2.2 Crux of OAuth Authentication
2.2.1 Authenticator Selection
In OAuth authentication, the authenticators should be

able to tell an RP the identity information of a user and his
presence with the application.

However, there are some common misunderstandings in
authenticator selection. Typically, many RPs and resear-
chers thought that an access token can be used as the authen-
ticator. Since the IdP authenticates the user before issuing
an access token, it is tempting to think that the token can
represent the user’s identity. However, the access token is
designed to be opaque to the RP. OAuth defines no specific
token format, no common set of scopes for the access token,
RPs are unable to derive user profile from the access token.
For example, if an RP utilizes the token as the authentica-
tor, generally he can exchange the token for user’s identity
information on the server-side, and bind the IdP-managed
user id to the current session with the user-agent. However,
an attacker can substitute the victim’s token with his own,
and the RP will bind the attacker’s identity to the current
session with the victim’s user-agent, i.e., the attacker forces
the victim to login to the attacker’s account on RP, then he
can obtain the victim’s personal information.

As a consequence, in the context of OAuth authentication,
tokens can only be used to exchange for user’s identity in-
formation, and use the obtained information to authenticate
users.

2.2.2 Authenticator Transmission
Another key point in OAuth authentication is authenti-

cator transmission. The authenticators can be transmitted
in two ways: (1) Direct Communication, the IdP ser-
ver can transmit authenticators directly to the RP server

though channel 3, as sketched in figure 3(a). Authenticators
transmitted in this way is secure, as the traffic is invisible to
attackers. (2) Indirect Communication, as sketched in
figure 3(b). As the authenticators are transmitted though
channel 1 and channel 2. IdPs can adopt transport security
measures to protect channel 1, but not channel 2. If chan-
nel 2 is not protected by the RP, attackers can intercept
and tamper with the traffic, to masquerade as the user or
exchange the authenticators (e.g., access token) for user’s
protected resources. Meanwhile, If no mechanism (e.g., a
signature) is provided to protect the integrity of the authen-
ticators, attackers can tamper with the authenticators du-
ring transmission, to hijack a victim’s account or entice him
to login to an attacker’s account.

User Agent

IdP Server RP ServerChannel 3

(a) Direct Communication

User Agent

IdP Server RP Server

(b) Indirect Communication

Figure 3: Server-Server Communication

2.2.3 Server-side Verification
On the server side, the RP is responsible to verify the

binding between the authenticators and the current user, as
well as the integrity of the authenticators, so as to prevent
the impersonation attack. In the example mentioned in Sec-
tion 2.2.1, if the IdP utilizes a signature to protect the token,
and the key to generate the signature is the client secret (a
secret shared between the IdP and the RP), the RP can va-
lidate the signature to verify the token, however, if he fails
the validation, the attacker can still threaten user’s privacy.

3. APPROACH
Our approach consists of three empirical studies that exa-

mine the OAuth-based authentication mechanisms on diffe-
rent platforms:

• We first focus on understanding how RPs decide to
authenticate users with OAuth on different platforms.
In this step, we observe the authentication flows im-
plemented by RPs to pinpoint the authenticators se-
lected by RPs, as well as the communication channels.
These information plays an important role in the se-
curity analysis of RPs’ authentication mechanisms.

• Based upon the obtained knowledge, we conducted our
study on a representative sample of the most popular
applications on the Web, Android, iOS platform, to
analyze the security of RPs’ OAuth-based authentica-
tion mechanisms and the effectiveness of the OAuth
SSO protocols provided by different IdPs.

169

• In addition, we manually analyzed 16 popular relying
parties (e.g., IMDB, Feedly), each of these RPs distri-
butes their apps for multiple platforms. For example,
Feedly distributes its client application for Web, An-
droid, and iOS. We investigated how RPs implement
their OAuth-based authentication mechanisms on dif-
ferent platforms for their client applications, and how
the vulnerabilities in an app on a certain platform may
affect its siblings on other platforms.

3.1 Data Collection
We looked through the list of Alexa’s top 250 most-visited

websites, and observed 79 RPs supporting SSO services pro-
vided by 27 different IdPs. We took a closer look at the
relative popularity of the IdPs, and note that 98.6% of the
RPs are served by the top 6 IdPs whose SSO services are
integrated by at least 10% of the RPs. Our observation on
the Web platform conforms to that on the Android and iOS
platform. Table 1 illustrates the top-6 list of global IdPs,
and the number of RPs integrating their SSO services on
different platforms.

We examined the implementations of the six high-profile
IdPs, all of which use OAuth or OAuth-based protocol (e.g.,
Google OpenID Connect) as their primary protocol. Hence,
we decide to investigate the security and privacy issues of the
RPs’ authentication mechanisms built on top of the OAuth
SSO schemes provided by these IdPs.

We note that half of the six IdPs are American sites, while
the other half are Chinese sites. It can be explained by the
fact that RPs prefer to select IdPs with similar geographic
or cultural focus [19]. Ergo, we selected top 100 apps from
Google Play and top 100 apps from Chinese mainstream
markets as the samples of RP applications on the Android
platform, and top 100 apps in the US on iOS store [3], as
well as top 100 apps in China [2], as the samples of RP
applications on the iOS platform.

Meanwhile, among the RP application samples, we selec-
ted 16 popular RPs who distribute their applications on all
of the three platforms to help conduct our third study. For
each RP, at least one of their apps on a certain platform is
included in our aforementioned samples.

3.2 Adversary Model
Our study assumes that the user’s computer, browser and

mobile devices are not compromised, the IdP is benign, and
the communication between the RP and IdP is secured. We
do not trust the relying party who can be fully controlled
by the adversary. In addition, the client apps installed on a
mobile device are not trusted either, any information hard-
coded in such a client app can be obtained by the adversary
though reverse engineering techniques. Meanwhile, users
may download apps from third-party app markets rather
than the official app market, such a behavior introduces the
possibility of installing repackaged apps or malware.

In our adversary model, the goal of an adversary is to (1)
impersonate the victim on the RP application, (2) entice
the victim to login to the adversary’s account on the RP
website. There are two different adversary types considered
in this work, which vary on their attack capabilities:

• A malicious RP attacker can login to other benign
RPs as a normal user, and intercept, modify, replay
the traffic of his own. He can also act as a normal RP
to gather users’ information on his website.

IdP I/A Rank Web Android iOS Total

Facebook 1/3 46 30 32 108
QQ 2/8 21 53 28 102

Weibo 3/18 23 41 26 90
WeChat 4/4634 14 44 28 86
Google 5/1 27 20 24 71
Twitter 6/10 8 6 10 32

Table 1: Top-6 list of global IdPs and the number
of RPs integrating their SSO services on different
platforms. Legends: I: IdP; A: Alexa.

• An active network attacker can intercept, modify
and replay any unencrypted network traffic between
the user-agent and the RP. He can also launch common
SSL attacks (e.g., SSL stripping, rogue SSL certificate)
to decrypt the HTTPS traffic while the user-agent or
RP client implements SSL problematically.

3.3 Methodology
By virtue of the thorny challenges faced when conducting

a security analysis of real-world OAuth-based authentica-
tion mechanisms, including the lack of access to the source
code on the server-side of the RPs and IdPs, the comple-
xity of SDKs and the implicit assumptions to use the SDKs,
undocumented design features of the OAuth SSO schemes,
etc. We employe a security analysis methodology similar to
those used by many others [18, 21], that is, we treat IdPs and
RPs as black boxes, and focused on the traffic going through
the user-agent during an OAuth authentication transaction.
But different in two important aspects:

• First, we investigate the RP’s OAuth-based authenti-
cation mechanism from a malicious RP attacker’s pers-
pective, who can login to other RPs as a normal user
and analyze his authentication traffic including the
HTTPS-protected traffic going through his own brow-
ser, to identify the exploitable vulnerabilities, and then
use the pre-gathered user profile and OAuth credenti-
als to hack user’s account on other RPs’ websites. The
methodologies employed by the prior studies [18, 21]
can only analyze the unencrypted traffic, and identify
the flaws exploitable by an active network attacker,
but not other weaknesses we unveiled.

• Second, We adopt a differential analysis method to
pinpoint the authenticators utilized by RPs for user
authentication. Pinpointing the authenticators help us
(1) understand how RPs decide to authenticate users
with OAuth on different platforms, (2) investigate fun-
damental causes of the security and privacy issues in-
troduced by RP’s customized OAuth-based SSO me-
chanisms, and propose practical remedy options that
are applicable to the RPs.

Our methodology includes three steps: (1) understan-
ding how RPs decide to authenticate users with OAuth on
different platforms, (2) analyzing the security of the RPs’
OAuth-based authentication mechanisms and the effective-
ness of the OAuth SSO protocols provided by different IdPs,
and (3) investigating how vulnerabilities in an RP applica-
tion on a certain platform may affect its siblings on other
platforms.

170

Replayer

Decoder Fuzzer

Web
Collector

Proxy

Alice s Login
Bob s Login

Outputs

Error
Report

Mechanism
Report

Alice s Login
Bob s Login

Web Traffic

Mobile Traffic RP Server

Plaintext

Figure 4: An Overview of How We Analyze the Authentication Mechanisms

To conduct the analysis, we register two test accounts
Alice and Bob for each IdP to collect the authentication traf-
fic. The security analyses we execute are within the ethical
and legal boundary.

In the first step, we implement a web authentication flow
collector as a Firefox add-on. When using OAuth-based
authentication mechanisms to login to an RP website, we
can use the browser add-on to save all the observed traf-
fic (including HTTP and HTTPS traffic) in pcap format
for latter analysis. This add-on enables us to inspect the
communication between the RP and the user-agent from an
RP’s perspective. As for the mobile platform, we pre-install
a self-signed SSL certificate on an mobile device, and uti-
lize Mitmproxy [4] as our proxy to decrypt and dump the
authentication traffic.

The dumped pcap files serve as the input to the replayer,
which is implemented as an Mitmproxy inline script to parse
the captured traffic and replay/compare the authentication
requests. The replayer examines whether an authentication
request can be replayed. If the examination fails, the request
is added to an error report for manual analysis, otherwise
it compares Alice’s and Bob’s request to identify the para-
meters with different values, then Alice’s request along with
the identified parameters in Bob’s request are sent to a fuz-
zer, which is also implemented as an Mitmproxy inline script
to modify the request and analyze the responses. The fuz-
zer replaces one parameter in Alice’s request a time with
the corresponding parameter in Bob’s request, and replays
the modified request with other parameters unchanged to
the RP. This operation is executed iteratively until all the
pinpointed parameters have been checked. Then the fuzzer
analyzes RP’s response to identify the key parameters used
for authentication, and check whether the RP server veri-
fies the binding between the authenticators and the current
user. The analysis results of the fuzzer, the transmission
protocol (e.g, HTTP, HTTPs) as well as the RP name and
the platform type are recorded in a mechanism report file,
to help subsequent analysis in step (2). Figure 4 illustrates
the process of the analysis in step (1).

In the second step, we analyze the authentication traffic
from an active network attacker’s perspective. We disable
the Firefox add-on, remove the forged SSL certificate from
the mobile devices, and clean the browser’s cache, as well as
the IdP and RP clients installed in the mobile device. Then
we use Alice’s account to login to the RPs. The authentica-
tion traffic is captured using the aforementioned proxy. The
proxy is configured to forge an SSL certificate to attack the
client’s SSL implementation by default, as the situation of

SSL implementation in mobile apps is far less rosy [12, 17].
A problematic SSL deployment in an RP app can be detec-
ted, and its HTTPS traffic will be decrypted by the proxy
and treated as the plaintext traffic. We attempt to perform
static analysis on the RP’s client application if the authen-
tication flow involves client-side logic. A Python program
is developed to parse the dumped traffic and identify the
exploitable vulnerabilities based on the mechanism report
generated in the first step. Meanwhile, we manually analyze
the mechanism report, error report and the results obtained
in this step jointly to evaluate the selected authenticators
and communication channels, as well as RP server’s veri-
fication on the authenticators. This step answers how the
adversary can circumvent the authentication, and whether
IdPs’ OAuth SSO schemes increase the attack surface.

In the third step, based on the prior knowledge obtained
in step (1) and (2), we manually analyze the selected 16
RPs’ OAuth-based SSO schemes on different platforms. We
assess the apps of each RP on different platforms in turn.
First, we use Alice’s account to perform login on each app,
and capture the authentication traffic. Then we compare
the authentication requests/responses generated from diffe-
rent platforms, to examine whether the same app distributed
by a certain RP in different platforms employs a consistent
authentication mechanism. If a difference exists, we further
explore the root causes of the difference by analyzing their
client applications, and investigate whether such a difference
may compromise the RP’s SSO system.

4. MULTI-PLATFORM ANALYSIS AND RE-
SULTS

Using the aforementioned approach, we conducted a multi-
platform analysis on the real-world OAuth-based authenti-
cation mechanisms. Our study covers OAuth SSO servi-
ces provided by notable IdPs (e.g., Facebook, QQ, Weibo,
WeChat, Google and Twitter), and commercially deployed
OAuth-based authentication mechanisms of prestigious web-
sites/applications (e.g., Feedly, PhotoGrid and Youku Vi-
deo). Overall, we analyzed three sets of apps, including (1)
Web app set: Alexa’s top 250 websites, (2) Android app
set: top 100 apps on Google Play and top 100 apps in Chi-
nese mainstream markets, (3) iOS app set: top 100 apps in
the United States and top 100 apps in China on iOS Store.
We found that 241 out of the 650 applications implement
OAuth-based SSO schemes. Table 3 illustrates the usage of
OAuth authentication schemes on different platforms. The
relatively lower OAuth-based authentication usage on the

171

Name Vulnerability Attacker type Consequence Platform

V1 Unprotected Authentication
RP Attacker/
Network Attacker

Impersonation/Enticement/
Information Leakage

Android/iOS

V2
Use publicly accessible information as
authenticator (with HTTPS-protected)

RP Attacker Impersonation/Enticement Web/Android/iOS

V3 Client-side protocol logic Network Attacker
Impersonation/Enticement/

Information Leakage
Android/iOS

V4 Unprotected Token Refresh
RP Attacker/
Network Attacker

Information Leakage Web/Android/iOS

V5 Wrong Token (with HTTPS-protected) RP Attacker Impersonation/Enticement Web/Android/iOS

Table 2: Vulnerabilities uncovered in our study.

web platform can be explained by the use of subdomains
for hosting the same service. For example, 39 of the top
250 websites are Google’s subdomains hosting the Google
Search service for different countries, which share the same
login mechanism.

Our study shows that the real-world OAuth-based authen-
tication mechanisms are riddled with security flaws, which
may enable an attacker to impersonate a victim on an RP
application, or to entice a victim to login to the attacker’s
account on an RP website. These flaws are diverse and dis-
tributed on different platforms, as sketched in Table 2. We
found that 32.9%, 47.1% and 41.6% of three sets of apps
suffer from the vulnerabilities we uncovered. The results of
our investigation are elaborated in the rest of this section.

Scheme
Web Android iOS

N % N % N %

OAuth-based 79 31.6 85 42.5 77 38.5
Login-required 201 80.4 156 78 147 73.5

Total 250 100 200 100 200 100

Table 3: Usage of OAuth authentication on different
platforms. N refers to number.

4.1 Real-world OAuth SSO Mechanisms
As many websites and applications use OAuth for authen-

tication, major IdPs provide OAuth SSO SDKs for different
platforms to help developers integrate their services. In this
section, we introduce how real world RPs customize IdPs’
OAuth services for authentication on different platforms,
and how they manage identities from multiple IdPs.

4.1.1 Mechanisms on Different Platforms
RPs customize their OAuth-based authentication mecha-

nisms upon their obtained resources, their understandings of
the roles of OAuth credentials, their security requirements,
as well as their assumptions for different platforms. Table 4
illustrates the mechanisms used on different platforms.

Tendency. We can observe that the authenticators and
transmission protocols employed by RPs vary significantly
between the Web and mobile platform. The mechanism de-
ployed on the Android and iOS platform are similar. On
the mobile platform, RP developers are inclined to select
the publicly accessible user profile (e.g., user id, email) as
the authenticator. Meanwhile, they prefer to include client-
side protocol logic with the mobile apps and generate cryp-
tographic parameters to secure the authentication. Many
mobile apps neglect the protection of authenticators during
transmission. While on the Web platform, RPs are relati-
vely prudent, they prefer to use the authorization code or

access token as the authenticator, many of them also rely on
the server-side logic to complete the authentication. Most
RPs transmit authenticators with HTTPS protected.

Authenticator selection. Overall, we observed six typi-
cal authenticators used by RPs, as listed in Table 4. Apart
from the publicly accessible information and access token,
authorization code were used by a large number of RPs as
the authenticator, which is an one-time value and has a short
lifetime. Id token is a specific token used in Google OpenID
Connect, it is signed by the client secret and contains the
user profile, email address and other protected information,
which are encoded in clear-text using Base64. It fits the
requirements of authentication well. Not all of the mecha-
nisms depicted in Table 4 are secure to authenticate users.
We will explain the details in Section 4.2.

Authenticator transmission. Most RPs employed in-
direct communication to transmit authenticators and de-
ployed no measures to protect the integrity of authentica-
tors. Some mobile app developers performed cryptographic
operations on the client side to process the authenticators
to avoid disclosure, such a behavior is not suggested, as dis-
cussed in Section 4.2.2. A few RPs utilized a signature to
protect the authenticators, there are two situations: (1) the
signature is generated in the client app of the RP, this is
similar to A5, (2) the signature is generated on an authori-
zation server of the RP, and the authorization server returns
the signature to the client, this situation is similar to A7, as
the user has been authenticated by the authorization server.
Using direct communication (A7) to transmit authenticators
is secure and suggested, as the traffic between the IdP server
and the RP server is invisible to attackers.

Mechanism
Web Android iOS

\ SSL \ SSL \ SSL

A1 user id/email × ×
√

×
√

×
A2 auth code

√ √ √ √ √ √

A3 access token ×
√ √ √ √ √

A4 uid+access token ×
√ √ √ √ √

A5 encrypted data × -
√

-
√

-
A6 id token

√ √
×

√
×

√

A7 server-side logic
√

× ×

Table 4: Authenticators used on different platforms.
Legends: \: no SSL. -: no such case.

Server-side verification. Most RPs provided no server-
side verification, because the authenticators cannot be used
to verify the binding between them and the current session.
We observed 2 apps failed to validate the signatures used
to protect the authenticators, and 5 apps failed to verify
the binding between the user id and the access token, i.e.,
an attacker in possession of a valid access token can hijack

172

victims’ accounts by simply altering the user id.

4.1.2 Multi-Identity Management
78.4% (189/241) of the OAuth-capable apps in our dataset

support SSO schemes provided by more than one IdPs. For
example, Foxnews.com supports to be logged in via user’s
Facebook or Google account. Therefore, how to manage the
identities from multiple IdPs appears to be a great chal-
lenge. In general, there are three solutions adopted by RPs
in our observation: (1) Create a new account and combine
identities from multiple IdPs to this account, (2) Create an
account for the identity from each IdP, and use an auto-
generated string (e.g., jedi013579) as the new username, (3)
Create an account for the identity from each IdP, and use
the username obtained from the IdP as the new username,
or ask the user to specify the username/password for RP.

All of the three solutions have some shortcomings. In so-
lution (1), an attacker can compromise RP’s entire SSO sys-
tem by compromising a certain IdP’s SSO service, no matter
how secure other IdPs’ SSO services are. The more IdPs’
SSO services supported, the bigger the attack surface. In
solution (2), auto-generated usernames make it easier for an
enticement attack, it is difficult for a victim to distinguish his
own username from the attacker’s, especially on mobile plat-
forms where a long username may be displayed incompletely
due to a restricted screen size. In solution (3), requesting
username/password violates the design goal of OAuth, as
many users prefer to use same passwords for different web-
sites/ apps [1], this request may expose user’s password for
the IdP.

4.2 Security and Privacy Issues
Our investigation shows that OAuth-based authentication

mechanisms of many RPs suffer form various vulnerabilities.
Table 5 illustrates the percentage of vulnerabilities on diffe-
rent platforms. In this section, we categorize the root causes
of the vulnerabilities in Table 2. The results show concre-
tely how RP misused the results of an OAuth-based SSO
for its decision making, and how their customization of the
published protocols totally crippled the security of OAuth
authentication.

Platform V1 V2 V3 V4 V5

Web 0 9.6% 0 2.7% 23.3%
Android 31.7% 34.1% 22.4% 2.4% 16.5%

iOS 27.6% 21% 18.4% 3.9% 19.7%

Table 5: Percentage of vulnerabilities on different
platforms.

4.2.1 Blind Faith in HTTPS (V2 & V5)
Transmitting authenticators in a plaintext is obviously

insecure, especially when the publicly accessible informa-
tion (e.g., user id, email address) is used for authentica-
tion (V1). We observe that 19.9% of the RPs implemented
OAuth authentication in an unprotected manner. However,
HTTPS is not a panacea for OAuth authentication either.
In our observation, when HTTPS is applied to protect the
communication, 0.8% of the RPs based their verification of
user identity solely on the user id or email address (A1),
9.1% of the RP apps submitted the user id along with an
access token to their backend servers, but 22.7% of them fai-
led to verify the binding between the user id and the access

token (A4). 5.8% of the RPs simply used an access token
for authentication (A3). These RPs relied completely on
HTTPS for security of OAuth authentication.

Even though the mechanisms seem immune to the network
attackers, they are vulnerable to an RP attacker. For exam-
ple, RP A is controlled by an adversary, and he wants to
hack a victim’s account on RP B, we assume that the vic-
tim is also a user on RP A. The adversary can log into RP B
as a normal user in his own browser, and observe the authen-
tication process to identify exploitable vulnerabilities, if RP
B bases the user authentication on user id/email or access
token, the adversary can use the pre-gathered victim’s in-
formation to tamper with the authenticators and hack the
victim’s account on RP B.

4.2.2 Client-side Protocol Logic (V3)
In our observation, using client generated parameters (A5)

as the authenticators is a unique phenomenon on the mobile
platform. 13.7% of the RP apps in our dataset adopted such
a mechanism to authenticate users.

These RPs realized the need to protect confidential data,
and included client-side protocol logic to process the cre-
dentials before sending them back to the server. However,
instead of using common high-level protocols (e.g., SSL),
they customized the OAuth SSO services with cryptographic
mechanisms, such as encryption (e.g., DES), hashing (e.g.,
MD5, SHA1), and signing (e.g., HMAC), to ensure the se-
curity of OAuth authentication.

Unfortunately, such a behavior can completely break the
security of OAuth authentication and increase the attack
surface. This is because an adversary can completely con-
trol an app, and analyze how these encrypted parameters
and signatures are generated, and correspondingly generate
forged messages from the client side. The feasibility has
been shown in Zuo et al.’s study in [24]. Meanwhile, as
stated in [7], developers often violate principles in security
engineering and misuse cryptography in this process, which
may induce numerous vulnerabilities. Hence, including se-
curity sensitive protocol logic with the mobile application is
not recommended.

4.2.3 Offline Access (V1 & V4)
Offline access is a unique access service provided by Go-

ogle. It enables an RP application to access a Google API
when the user is not present. Examples of this include bac-
kup services and applications that make Blogger posts exac-
tly at 8am on Monday morning. In our analysis, 36.6% of
the examined RP apps incorporating Google’s SSO service
requested offline access permission.

Offline access for Google APIs is achieved through a re-
fresh token, which is issued when a user first visits the app
and grants offline access. Our observation shows that RPs
are not clear about how to use the refresh token securely.
If an RP wants to refresh tokens for long-term access, he
should submit the refresh token along with the client se-
cret to exchange for a new access token. As the previous
HTTPS session related to OAuth authentication has alre-
ady been ended, some RPs transmit the refresh token in
HTTP, which exposes the client secret to attackers. Me-
anwhile, even though RPs are educated not to hard code
the client secret in their client applications when implemen-
ting the authorization code grant flow [13], some of them
hard code the client secret in their mobile applications to

173

refresh tokens. Given that 33.2% of the examined apps uti-
lized the authorization code as the authenticator, and the id
token used for authentication is signed by the client secret,
an attacker with knowledge of the client secret can intercept
authorization codes to hijack users’ accounts, or forge id to-
kens to entice a victim to login to the attacker’s account.

4.2.4 Wrong Token (V5)
Another common confusion amongst RP developers is the

roles of different tokens. The“OAuth Threat Model” [14] in-
troduces two types of access token: Bearer token, which can
be used by any client who has received the token, and MAC
token, which can only be used by a specific client, and pre-
vent replay attacks when the communications are eavesdrop-
ped. When an access token is used for authentication, the
RP is supposed to check that the token used to retrieve
the user’s identity information is granted to the same RP,
otherwise an adversary can use tokens issued to a malicious
RP to impersonate the victim on a benign RP application
(as discussed in the prior section). Hence, if RPs want to
use an access token for authentication, they should choose
MAC token rather than bearer token.

However, all the access tokens used as an authenticator
observed in our analysis were bearer tokens. There is a pos-
sibility that IdPs offer bearer tokens as the only option for
the sake of simplicity.

Google OpenID Connect also offers two types of token:
access token, which is a bearer token, and id token, in which
the user profile and email address are encoded in cleartext
using Base64. Google suggests to use the access token for
authorization and id token for authentication. Nevertheless,
20.4% of the apps incorporating Google OpenID Connect
utilized the access token to authenticate users. The id token
is supposed to be transmitted under protection, otherwise
an adversary can decode it to obtain user profile and other
protected resources even without invoking the Google APIs.

4.3 Case Study
To investigate how RPs deploy their OAuth-based authen-

tication mechanisms on different platforms for the same app,
we manually analyzed 16 representative RPs. 43.75% (7/16)
of them deployed consistent authentication mechanisms on
different platforms, three of the seven RPs’ mechanisms were
vulnerable. Eight of the remaining 56.25% RPs suffered
from at least one vulnerability on one kind of the examined
platforms. As apps for different platforms share the same
back-end database and other resources, one vulnerability on
a certain platform can compromise the security of the en-
tire SSO system. In the following, we present two cases to
explain the typical vulnerabilities.
Case #1: Feedly leaks credentials during the authen-
tication and token refresh process
Feedly is one of the most popular news aggregator applica-
tion for various web browsers and mobile devices running
iOS and Android, with millions of active users.

Feedly uses Google as an identity provider for authentica-
tion, and the authentication mechanism is Google OpenID
Connect: Feedly requests an authorization code from Google
first, and then utilizes the code to exchange for an id token
to authenticate the user. However, when processing the ac-
tual traffic on the web platform, we observed that Feedly’s
authentication mechanism was based on Google OAuth 2.0,
which is designed for authorization. Feedly utilized a bearer

token as the authenticator and transmitted it in a plaintext.
But even worse, Feedly refreshed the access token in the sub-
sequent communication and leaked the client secret. On the
Android platform, we observed that Feedly protected the
authentication process with HTTPS. Nevertheless, Feedly
for Android failed to protect the client secret, it hard coded
the secret in the “refreshToken”function, and the secret was
the same as that observed on the Web platform.

In this case, Feedly appeared to be completely ignorant
of the role of a bearer token, and neglected the protection
of the client secret when refreshing tokens. Because of this
flaw, a malicious RP was able to use his pre-gathered access
tokens to hijack victims’ accounts on Feedly. He could even
use the leaked client id/secret to impersonate Feedly, so as to
interact with Google and collect user’s privacy information.
The flaw related to the refresh token is quite unique among
the ones we have discovered. As the token refresh process
occurs occasionally, how real-world RPs refresh an access to-
ken was rarely discussed in the prior studies. This operation
does not have much technical subtlety, but it exists in such a
significant application. Other RPs should learn lessons from
this flaw whether they make the same mistake or not.

Case #2: Mango TV’s wrong authentication mecha-
nism in Android compromised the security of its en-
tire SSO system
The second case involves Mango TV or imgo.com, which is
a top online video and streaming service platform in China,
with over one million monthly active users. Mango TV dis-
tributes its client application on different platforms, inclu-
ding Web, Android, iOS.

When analyzing Mango TV’s authentication schemes ba-
sed on Weibo’s SSO service, we found that it deployed dif-
ferent mechanisms for apps on different platforms.

On the web platform, Mango TV deployed a resource ser-
ver and an authorization server for authentication. Its client
submitted the obtained authorization code to the authoriza-
tion server. The authorization server requested user’s iden-
tity information and generated a ticket parameter on the
server side, and then redirect the ticket and a signature to
the resource server, to complete the authentication. As the
tokens and user profile were obtained on the server side,
and the ticket used for authentication was protected by a
signature, the authentication process was free from known
attacks.

On the mobile platform, including the Android and iOS
platform, the Mango TV app requested an access token from
Weibo first, and utilized the access token along with the
user id to authenticate a user. Although the authorization
process was protected by HTTPS, the identity information
used for authentication was transmitted in HTTP, such a
behavior made the previous protection of the access token
meaningless. We were able to build a exploit by tampering
with the user id and access token to hijack a victim’s account
on Mango TV easily.

What confused us was that Mango TV’s authentication
mechanism on the Web platform showed that the develo-
pers knew how to authenticate users securely, but they still
deployed different mechanisms on different platforms, thus
put the entire system in danger.

5. DISCUSSION
We analyzed the status quo of OAuth-based authentica-

174

tion mechanisms deployed by real-world RPs in the prior
section, and uncovered several critical vulnerabilities that
may threaten the security of OAuth authentication. In this
section, we discuss the advantages and disadvantages of th-
ree possible defenses that can be used by RPs to prevent
these vulnerabilities, and develop some practical recommen-
dations for IdPs and RPs to secure OAuth authentication.

5.1 Pros and Cons of Possible Mitigations

5.1.1 Certification of Symbolic Transactions
The Certification of Symbolic Transaction (CST) [9] pro-

posal tries to verify a protocol-independent safety property
jointly defined over all parties, to avoid the burden of indi-
vidually specifying every party’s property for every proto-
col. It treats a multiparty transaction as a runtime process
for creating a proof obligation for a static program veri-
fier. The certifier logically examines whether the sequence
of computations on all parties in this transaction collecti-
vely ensures the global predicate. This approach prevents
any manipulation on the communications between involved
parties. However, it requires modifications to existing cli-
ents and servers. When applied to an SSO system, CST
requires the client to hold a piece of BrowserSecret, which
can be leaked on the mobile platform, thus compromises the
security of the entire system.

5.1.2 Secure Channel
Using an existing in-browser communication channel to

establish a dedicated, bi-directional, authenticated, secure
channel is a channel established is an intuitive idea to pro-
tect the communication between an RP and an IdP [8]. It
leverages public key cryptography to help an RP and an
IdP authenticate each other and share a common secret,
i.e., the session key. All further communication between the
RP and the IdP is then encrypted with the session key and is
kept secret from eavesdroppers. This solution is able to pre-
vent network attackers. However, it cannot defend against
a malicious RP inside the browser. Meanwhile, this appro-
ach fundamentally relies on the in-browser communication
channel, it is not designed to protect the communications
on mobile (e.g., Android, iOS) platforms.

5.1.3 InteGuard
InteGuard [23] offers security protection to vulnerable web

API integrations. It operates a proxy in front of the service
integrator’s web site, and perform security checks on the set
of invariant relations among the HTTP messages the inte-
grator receives during a transaction. These invariants link
multiple HTTP sessions to a transaction and capture their
security-critical relations. This proposal may block most of
the existing man-in-the-middle attacks, since attackers can-
not impersonate the client. However, its policy checking step
can introduce some additional states for an SSO transaction,
which makes the system more vulnerable to a distributed de-
nial of service (DDoS) attack. RPs should assess whether
this is an acceptable trade-off.

5.2 Recommendations
Some mitigations are robust against our discovered vulne-

rabilities, but none of them are available for RPs to use yet.
Hence, we develop some practical recommendations to help
RPs address the problems existing in current mechanisms

and design more robust authentication mechanisms based
on OAuth.

• Enforce authenticator integrity protection: One
reason the OAuth-based authentication mechanisms
are vulnerable to the impersonation attack is that the
integrity of authenticators is compromised by attac-
kers. RPs should include a value (e.g., a signature)
that binds the authenticator to the current user (i.e.,
the current session), to protect the integrity of authen-
ticators. Even if an attacker can tamper with the
authenticator, he is unable to generate the hash, thus
fails to impersonate the user.

• Deploy countermeasures against replay attacks:
RPs should include a timestamp or use a MAC token
to prevent the replay attack. The authorization code is
restricted to one-time use. Similar restrictions should
be applied to the authenticators. Otherwise attackers
can replay the authentication traffic to masquerade as
the user.

• Do not include client-side protocol logic: When
implementing authentication mechanisms with OAuth
in mobile applications, RPs should not include client-
side protocol logic. As the mobile apps can be com-
pletely controlled and analyzed by attackers, it is fe-
asible to forge cryptographically consistent messages
from the client side, as shown in [24]. Meanwhile, Cai
et al. [7] showed that developers often violate princi-
ples in security engineering and misuse cryptography
when including security sensitive logic with the client-
side application. RPs are suggested to use server-side
logic to obtain authenticators.

Furthermore, we recommend that RPs can adopt our analy-
sis methodology (as publicized in this paper) to detect vul-
nerabilities of OAuth-based authentication on different plat-
forms. In the meantime, we suggest IdPs to provide stan-
dard authentication mechanisms (e.g., OpenID Connect) for
RPs. The purpose of their SSO services is to help RPs
authenticate users securely with OAuth, but the prevalence
of RPs’ insecure OAuth-based authentication mechanisms
indicates the failure of the SSO service integration. In our
observation, understanding the complexity of the OAuth
protocol and customizing the home-brewed protocols are the
common source of problems for RP developers, the IdPs are
responsible to offer guidance to RPs, to help them authen-
ticate users in a secure way with OAuth.

6. RELATED WORK
Extensive research has been conducted to analyze secu-

rity of OAuth in recent years. Sun et al. [18] conducted
an empirical analysis of real-world OAuth implementations,
and discussed the impact of classical web attacks on OAuth.
Chen et al. [10] analyzed the major differences of OAuth
implementation between the web and mobile platform, they
revealed several vulnerabilities in OAuth-capable apps on
mobile devices caused by developer’s misinterpretation of
the OAuth protocol. Wang at al. [20] proposed a vulnera-
bility assessment framework of OAuth implementations on
the Android platform. In [11, 15, 16, 22], further attacks
on OAuth implementations were discovered and reported.

175

Instead of focusing on the authorization process or the ex-
change of the OAuth credentials, our work aims to provide
deeper insights into the OAuth authentication process.

The issues with SSO have been considered by many re-
searchers. Wang et al. [21] studied the security quality of
popular web SSO systems and identified several implemen-
tation flaws related to token verification. They also introdu-
ced a systematic process for identifying critical assumptions
in SDKs, and identified some exploits in apps constructed
by importing these SDKs [22]. Bai et al. [5] proposed a fra-
mework to extract the authentication protocol specifications
automatically, and found security flaws in several SSO sys-
tems. They further explained the risk of backing up OAuth
authenticators on Android [6]. Unlike previous studies, the
focus of our work is not on the generic SSO protocols, nor
individual attacks, but rather how RPs authenticate users
with OAuth on different platforms, and why some interpre-
tations are correct while others are not.

7. CONCLUSION
In this paper, we report a security study of real-world

OAuth-based authentication mechanisms employed by web-
sites and mobile applications. The study shows that these
mechanisms lack sufficient verification and are vulnerable to
many attacks including user impersonation, client imperso-
nation, enticement attack, etc. We also reveal that RPs have
different tendencies to authenticate users with OAuth on dif-
ferent platforms, and 32.9%, 47.1% and 41.6% of the exami-
ned apps on the Web, Android and iOS platform suffer from
various vulnerabilities. We then categorize the root causes of
these vulnerabilities and develop some practical recommen-
dations for RPs to secure their OAuth-based authentication
mechanisms.

8. REFERENCES
[1] 55% of Net Users Use the Same Password for Most, If

Not All, Websites. https://nakedsecurity.sophos.com/
2013/04/23/users-same-password-most-websites/.

[2] iOS Top App Charts (China). https://www.appannie.
com/apps/ios/top-chart/china/overall/.

[3] iOS Top App Charts (US). https://www.appannie.
com/apps/ios/top-chart/united-states/overall/.

[4] MitmProxy. https://mitmproxy.org.
[5] G. Bai, J. Lei, G. Meng, S. S. Venkatraman,

P. Saxena, J. Sun, Y. Liu, and J. S. Dong.
AUTHSCAN: Automatic Extraction of Web
Authentication Protocols from Implementations. In
NDSS, 2013.

[6] G. Bai, J. Sun, J. Wu, Q. Ye, L. Li, J. S. Dong, and
S. Guo. All Your Sessions are Belong to us:
Investigating Authenticator Leakage through Backup
Channels on Android. In ICECCS, 2015.

[7] F. Cai, H. Chen, Y. Wu, and Y. Zhang. AppCracker:
Widespread Vulnerabilities in User and Session
Authentication in Mobile Apps. In MOST, 2014.

[8] Y. Cao, Y. Shoshitaishvili, K. Borgolte, C. Kruegel,
G. Vigna, and Y. Chen. Protecting Web-Based Single
Sign-On Protocols against Relying Party
Impersonation Attacks through a Dedicated
Bi-Directional Authenticated Secure Channel. In
RAID, 2014.

[9] E. Y. Chen, S. Chen, S. Qadeer, and R. Wang.
Securing Multiparty Online Services via Certification
of Symbolic Transactions. In S&P, 2015.

[10] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and
P. Tague. OAuth Demystified for Mobile Application
Developers. In CCS, 2014.

[11] H. E and L. A. How We Hacked Facebook with
OAuth2 and Chrome bugs.
http://homakov.blogspot.ru/2013/02/
hacking-facebook-with-oauth2-and-chrome.html.

[12] S. Fahl, M. Harbach, T. Muders, M. Smith,
L. Baumgärtner, and B. Freisleben. Why Eve and
Mallory Love Android: An Analysis of Android SSL
(In) Security. In CCS, 2012.

[13] IETF. The OAuth 2.0 Authorization Framework
(RFC 6749), 2013.

[14] T. Lodderstedt, M. McGloin, and P. Hunt. OAuth 2.0
Threat OAuth Model and Security Considerations.
2013.

[15] R. Paul. Compromising Twitter’s OAuth Security
System. Technical report, Ars Technica, 2010.

[16] E. Shernan, H. Carter, D. Tian, P. Traynor, and
K. R. B. Butler. More Guidelines Than Rules: CSRF
Vulnerabilities from Noncompliant OAuth 2.0
Implementations. In DIMVA, 2015.

[17] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and
L. Khan. SMV-hunter: Large Scale, Automated
Detection of SSL/TLS Man-in-the-Middle
Vulnerabilities in Android Apps. In NDSS, 2014.

[18] S.-T. Sun and K. Beznosov. The Devil is in the
(Implementation) Details: An Empirical Analysis of
OAuth SSO Systems. In CCS, 2012.

[19] A. Vapen, N. Carlsson, A. Mahanti, and
N. Shahmehri. Third-party Identity Management
Usage on the Web. In PAM, 2014.

[20] H. Wang, Y. Zhang, J. Li, H. Liu, W. Yang, B. Li,
and D. Gu. Vulnerability Assessment of OAuth
Implementations in Android Applications. In ACSAC,
2015.

[21] R. Wang, S. Chen, and X. Wang. Signing Me onto
Your Accounts through Facebook and Google: A
Traffic-Guided Security Study of Commercially
Deployed Single-Sign-On Web Services. In S&P.
IEEE, 2012.

[22] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and
Y. Gurevich. Explicating SDKs: Uncovering
Assumptions Underlying Secure Authentication and
Authorization. In USENIX Security Symposium, 2013.

[23] L. Xing, Y. Chen, X. Wang, and S. Chen. InteGuard:
Toward Automatic Protection of Third-Party Web
Service Integrations. In NDSS, 2013.

[24] C. Zuo, W. Wang, R. Wang, and Z. Lin. Automatic
Forgery of Cryptographically Consistent Messages to
Identify Security Vulnerabilities in Mobile Services. In
NDSS, 2016.

176

